Structured Representation of Information

Learning Outcomes

The course’s material includes standard technologies and languages of modeling/representation of data/metadata used on the web and web services and how they are implemented in practice with code development in XML, XSL, and XML Schema.

Upon successful completion of the course, the students will be in position to:

  • Explain the basic technologies and languages of data modeling/ representation of data/metadata used on the web and web services.
  • Design and develop programs using XML, XSL and XML Schema.
  • Evaluate metadata modeling and decide whether they follow the given requirements.

Course Contents

  • Introduction to markup languages and semantic web
  • Introduction to XML, basic structure of XML documents
  • Valid XML documents / Use of Document Type Definition (DTD)
  • Presentation of XML documents using CSS
  • XML namespaces
  • Presentation of XML documents using data binding
  • Presentation of XML documents using scripts of Document Object Model (DOM)
  • Transformation and presentation of XML documents using XSLΤ/XSL
  • Modelling of XML documents using XML Schema
  • XML applications

Recommended Readings

  • “XML Guide”, Edition: 1st, Author: S. Holzner, Publisher: M. Gkiourdas, 2009 (1st Book)
  • “XML step by step”, Author: M. J. Young, Publisher: Kleidarithmos Ltd, 2011 (2nd Book)
  • Notes and course slides

Computer Networks II

Learning Outcomes

The aim of the course “Computer Networks II” is to complement the course “Computer Networks I”, in order for the students to deepen their knowledge in Computer Networks and their functions. In particular, through this course the students will get familiar with the operation of the data link layer, the Medium Access Control (MAC) sub-level and the Logical Link Control (LLC) sub-level.

Upon successful completion of the course, the students will be in position to:

  • select and apply parity bit, CRC and hamming techniques,
  • select and apply information retranslation techniques through the computer network,
  • use the corresponding communication protocols,
  • combine their knowledge in the field routing,
  • use the most appropriate protocol according to the needs of the network, based on correction and retransmission techniques, thus developing a critical way of thinking.

Course Contents

  • Section 1: Introduction to the functionality of the Data Link Layer (DLL), Medium Access Control (MAC) and Logical Link Control (LLC) layers, error control, error detection, error correction, retransmission techniques, error detection techniques.
  • Section 2: Cyclic Redundancy Codes (CRC), error correction techniques.
  • Section 3: Hamming techniques, Forward Error Correction (FEC), retransmission techniques.
  • Section 4: Stop-and-Wait (S&W), Alternating Bit Protocol (ABP), Automatic Repeat Request (ARQ), sliding window techniques, Go Back N (GBN), Soptional Repeat (SRP).
  • Section 5: MAC protocols; Aloha; Carrier Sense Multiple Access (CSMA); MAC protocols in Wireless Section 6: LANs/MANs/PANs; ΙΕΕΕ 802; x standards; LLC protocols; 802.2 standard.
  • In addition, articles, web addresses for useful information, as well as exercises for practicing students are posted in the platform Evdoxos.

Recommended Readings

  • Walrand J. (1997): Communication Networks, Prentice Hall.
  • Russell T. (1997): Telecommunications protocols, McGraw-Hill.

Associated scientific Journals

  • ΙΕΕΕ Computer Networks
  • IEEE Communications Magazine
  • EEE Access
  • IEEE Wireless Communications
  • International Journal of Network Management
  • Transactions on Emerging Telecommunications Technologies
  • EURASIP Journal on Wireless Communications and Networking

Business Process Management

Learning Outcomes

The objective of this course is to present fundamental principles of Business Process Management (BPM) and to study various methods and techniques for analyzing, modeling, automating, executing and optimizing business processes. The course will incorporate a laboratory component with well-known BPM software tools that allow students to practice some of the principles addressed.

Upon successful completion of this course student will be able to:

  • Create business process models by using BPMN based modelling tools
  • Execute business processes by using Business Process Management Systems
  • Analyze the performance of existing business processes and improve business processes that are not sufficient according to certain criteria
  • Create business process management strategies and business processes implementation plans within organizations

Course Content

  1. Business process definition, intra- and inter-organizational processes. Process-oriented organizations. Build processes’ business models. Virtual enterprises. Business processes and workflows.
  2. Process analysis techniques. Qualitative process analysis (e.g. Pareto analysis, value-added analysis, root-cause analysis). Quantitative process analysis (e.g. queuing analysis, simulation). Performance metrics (time, cost, quality).
  3. BPM life cycle. Discover, analyze, model, monitor, map, simulate, deploy. Business Process Reengineering-BPR and Business Process Improvement- BPI methodologies. Business Process modeling tools.
  4. The BPMN standard for business process modelling.
  5. Business process automation. Conceptual and executable process models.
  6. Business Processes Management Systems-BPMS (e.g. structure, architecture, standards).
  7. Process and activity life cycles. Workflow-based applications.
  8. Business processes and workflows, workflow categories, workflow dimensions, workflow management, workflow functional requirements, workflow specifications and execution languages.
  9. Workflow management using a specific BPMS software tool.
  10. Process Analytics. Metrics for evaluating business processes’ performance. Monitoring of standard metrics and process specific, user dined metrics.
  11. BPM methodologies (e.g. Six Sigma, Lean).
  12. Service-oriented and process-oriented information systems.

Suggested Bibliography

  • John Jeston and Johan Nelis (2008): Business Process Management, Second Edition: Practical Guidelines to Successful Implementations, Butterworth-Heinemann, Boston, ISBN: 0750669217.
  • Artie Mahal (2010): How Work Gets Done: Business Process Management, Basics and Beyond, Technics Publications, New Jersey, ISBN: 193550407.
  • Matias Weske, (2010): Business Process Management: Concepts, Languages, Architectures, Springer, New York, ISBN: 3642092640.
  • Simha Magal and Jeffry Word (2009): Essentials of Business Processes and Information Systems, Wiley, New York, ISBN: 0470418540.
  • Howard Smith and Peter Fingar (2003): Business Process Management: The third wave. Meghan Kiffer, ISBN: 0929652339.
  • Mark McDonald, (2010): Improving Business Processes, Harvard Business Review Press, Boston, ISBN: 142212973.
  • Business process management Journal, Emerald.
  • International Journal of Business Process Integration and management, Inderscience Publishers.

Quantum Computing

Learning Outcomes

The course seeks to familiarize students with the basic principles governing the use of quantum pheonomena for solving computational problems. It focuses on the presentation of the mathematical background that is required to model quantum phenomena related to computational processes and to the analysis of quantum operations and algorithms capable of being executed by quantum computers. Furthermore, the course analyzes the relation between classical and quantum computations and provides a survey of the many open problems that exist in the quantum computing field. At a more applied level the course describes modern programming environments for quantum computing.

Course Contents

  • Mathematical Background
    • Elements of Linear Algebra, Elements of Complex Analysis
  • Elements of Quantum Mechanics
    • Quantum mechanical behavior in electrons and photons (spin, polarization) – Quantum Mechanical Experiments
  • Qubits and their Attributes
    • Representation, Superposition, Tensor Product, Entanglement, Measurement, Bell’s Inequality
  • Classical Logic, Gates and Circuits
  • Quantum Gates and Circuits
  • Quantum Algorithms
    • Deutsch-Josza, Simon, Grover, QFT, Shor
  • Programming Environments for Quantum Computing

Recommended Readings

  • Nielsen, M. A., Chuang, I. L., Quantum Computation and Quantum Information, Cambridge University Press, 2010.
  • Instructor’s Notes

Database Systems

Learning Outcomes

The students upon the successful completion of the course will be able:

  • to apply the appropriate techniques for programming and managing database systems
  • to know the basic storage and data organization structures.
  • to apply query processing, query optimization and transaction management mechanisms.
  • to understand the mechanisms that ensure the integrity of the system in the case of multiple concurrent users with access to the same data and database recovery methods in case of failure.

Course Contents

  • Introduction to Database Management Systems (DBMSs). Fundamental concepts of DBMSs, database applications, overview of data models.
  • Data storage and file organization.
  • Query processing methods
  • Query optimization methods.
  • Transaction management: characteristics of a transaction management system.
  • Concurrency Control.
  • Database recovery methods.
  • Parallel and Distributed databases: design, query processing and transaction management in distributed systems.

Recommended Readings

  • Ramakrishnan R. & Gehrke J. (2002): Database Management Systems (3rd Edition), McGraw Hill.
  • Elmasri R. & Navathe S.B. (2007): Fundamentals of Database Systems (5th Edition), Addison-Wesley.

Network Security

Learning Outcomes

The aim of the course is to present and analyze the measures implemented on a network infrastructure, the policies adopted by the network administrator to protect the network and its resources against unauthorized access, and the effectiveness (or lack of) of them. The course focuses on the security of wired-fixed networks that use Internet technology. The mechanisms and security protocols that ensure the operation of the above networks and the data of their users are presented and analyzed.

Upon successful completion of the course, the student will be familiarized with and will apply different security measures and techniques applied to wired networks that aim to provide security services to users of a network as well as to its providers.

Course Contents

  • Security at lower layers.
  • Network layer security solutions.
  • Application layer security solutions.
  • Key management protocols; identity management protocols.
  • Firewalls.
  • Trust management.
  • Distributed authentication systems and intrusion detection systems.

Recommended Readings

  • Stallings W. (2007): Network Security Essentials, Applications and Standards, 3rd Edition, Prentice Hall.
  • Kaufman C., Perlman R. & Speciner M. (2002): Network Security: Private Communication in a Public World, 2nd Edition, Prentice Hall.

Wireless Communications

Learning Outcomes

The aim of the course is to enable students to understand the basic principles of electromagnetic systems for wireless communications. By concluding the course, students are able to

  • identify, describe and distinguish the basic characteristics of electromagnetic systems describe physical laws of electromagnetism using appropriate mathematical tools
  • distinguish the type of antenna and examine its characteristics
  • compute metrics which are extensively used in wireless systems and design basic wireless links
  • analyze and design more complicated wireless systems

By concluding the lab sessions students are able to

  • understand physical phenomenon by using mathematical tools
  • identify and apply theory in real world problems
  • use professional antenna design tools for the first time

Course Contents

Initially, introductory concepts of the Theory of Electromagnetic Fields are provided (Sources of Electromagnetic Fields, Electrostatic Fields, Dielectric Modes and Boundary Conditions, Permanent Magnetic Fields, Biot-Savart Law, Magnetic Flow Density, Gauss Law, Lorenz Power). Subsequently, electromagnetic waves in space are described (Maxwell equations, sinusoidal time variations, free space conditions and wave equation, uniform plane waves in lossless media, wave polarization). Thereafter, the students are introduced to antenna theory and the fields of radiation (potential functions, wave radiation areas, far field assumption, generic calculation methodology of radiation fields by antennas, basic key antenna features, antenna as a circuit element, antenna effective length). Examples of antennas are then studied (Hertz dipole, linear dipole antenna of arbitrary length, dipole λ/2, small circular loop antenna). Finally, the fundamental elements of electromagnetic wave propagation are examined (frequency bands & services/applications, wave classification, Friis’ equation and Free Space Loss, reflection & transmission, plane-earth model).

Papers, lectures, case-studies, examples and web pages with valuable information are uploaded at the course web page (Evdoxos).

Recommended Readings

  • “Wireless Communications” in Greek language, Book code in www.eudoxus.gr: 68393538, Edition: 2nd edition/2017, Authors: Kanatas Athanasios, Pantos Georgios, ISBN: 978-960-491-112-7, Publisher: A.Papasotiriou & Sia I.K.E (1st Book)
  • “Antennas – Wireless Links”, Book code in www.eudoxus.gr: 18548842, Edition: 1st edition/2018, Writers: Kapsalis C., Kottis P., ISBN: 960-8050-96-0, Publisher: A. Tziola & Sons S.A. (2nd Book)

Associated scientific Journals

  • ΙΕΕΕ Transactions on Antennas & Propagation
  • IEEE Communications Magazine
  • IEEE Antennas & Wireless Propagation Letters