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User-Centric Similarity Search
Konstantinos Georgoulas, Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis

Abstract—User preferences play a significant role in market analysis. In the database literature there has been extensive work on
query primitives, such as the well known top-k query that can be used for the ranking of products based on the preferences customers
have expressed. Still, the fundamental operation that evaluates the similarity between products is typically done ignoring these
preferences. Instead products are depicted in a feature space based on their attributes and similarity is computed via traditional
distance metrics on that space. In this work we utilize the rankings of the products based on the opinions of their customers in order to
map the products in a user-centric space where similarity calculations are performed. We identify important properties of this mapping
that result in upper and lower similarity bounds, which in turn permit us to utilize conventional multidimensional indexes on the original
product space in order to perform these user-centric similarity computations. We show how interesting similarity calculations that are
motivated by the commonly used range and nearest neighbor queries can be performed efficiently, while pruning significant parts of the
data set based on the bounds we derive on the user-centric similarity of products.

Index Terms—Similarity Estimation, Reverse top-k query, Top-k query, user preferences.
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1 INTRODUCTION

E STIMATION of the similarity between objects is a fundamen-
tal operation in data management. For instance it is used to

find pages or documents with similar words over the web [1] or
in order to detect customers with abnormal behavior based on the
products they buy [2]. Moreover, similarity computations can be
performed for the detection of similar conversations and comments
between users of the social networks (i.e. comments on Facebook,
tweets on Twitter) [3].

Many different similarity metrics have been proposed for
evaluating the similarity between two data items, such as the
Euclidean distance and the cosine similarity. Such metrics suggest
that the similarity between data items is computed based on their
attributes, without taking into consideration users’ opinions. For
example, in business analysis the products are represented as
points, defined by their attributes values. The closer two products
are to each other according to the selected metric, the more similar
they are.

In our work we introduce a complementary user-centric ap-
proach for similarity computation, which takes into account users’
preferences. For instance, a business manager would like to know
the impact of its business products to customers, compared to
their competitors existing products. It is quite important for her to
know which of the products belong to the favorite list of as many
different customers. This knowledge could be utilized to focus
on products, which have similar groups of customers that rank
them in high positions based on their preferences. Then, a more
efficient marketing policy could be established, creating clusters
of products that are preferable to specific customers.
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Thus, a business manager should be able to perform a query
that returns products (even products that have never been rated)
which are similar based not only on their characteristics but also on
the users’ preferences. She needs to see the data through the eyes
of the users while performing similarity computations based on the
available users’ preferences. In our framework, users’ preferences
are expressed as vectors of weighting factors for items’ attributes.
In order to perform such kind of similarity computations, we
exploit a query type, termed a reverse top-k query [4]. In contrast
to a top-k query that returns the k products with the best score
for a specific customer, the result of a reverse top-k query is the
set of customers for whom a given product belongs to their top-k
set. Our work is also applicable in case products have recently
launched in the market or products being in the designing phase
of the manufacturing process and there have been no expressed
users opinions for them yet.

Example 1. Consider an example from business analysis, where
we would like to estimate the similarity between products based
on the preferences their customers have expressed for them. A
common way to rank products for a customer is to execute a top-
k query that assigns scores to each product. In a typical setting,
the top-k query utilizes a weight w[i] for each attribute p[i] of
product p and combines these weights and attributes via a scoring
function f . The particular set of weights are different for each
customer. A score function often used in the literature [4] is the
linear function fw, which for a product p is computed as: fw(p) =∑
w[i] ∗ p[i]. Without loss of generality we assume that lower

scores are better.

The weights of a customer define a vector w that is of the
same dimensionality as the vectors used to represent the products.
They can thus be presented in the same d-dimensional feature
space, where d is the number of products’ attributes. In Figure 1
we can see twelve products p1, . . . , p12 and the weighting vectors
w1, . . . , w6 of six different customers. The dimensionality of this
space is d=2. If we utilize the Euclidean distance for computing
the similarity between products, then it is evident that product p9 is
more similar to products p7 and p12. A natural question is whether
this similarity evaluation is natural for the users, based on their
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Product Customers that include
Product in their favorite list

p1 {w3, w4, w6}
p2 {w3, w4}
p3 {w3}
p5 {w1, w2, w4, w5, w6}
p8 {w1, w2, w5, w6}
p9 {w1, w2, w5}

Product Price [e] Weight [lbs]

p1 5 32
p2 4 45
p3 8 44
p4 18 42
p5 20 5
p6 21 36
p7 21 26
p8 22 10
p9 27 23
p10 28 35
p11 34 36
p12 37 23

User w[Price] w[Weight]

w1 0.15 0.85
w2 0.07 0.93
w3 0.93 0.07
w4 0.73 0.27
w5 0.24 0.76
w6 0.52 0.48

Fig. 1. Example of products, user preferences and reverse top-k sets.

expressed preferences, depicted in the six weighting vectors?
Without getting in the details of the top-k/reverse top-k queries

(these will be presented in the next sections), product p8 is in
the favorite list of four customers (w1, w2, w5, w6) while three
of these customers and more specific customers with weighting
vectors w1, w2, w5 include product p9 in their favorite list of
products too. On the other hand, neither p7 nor p12 are included
in the favorite lists of any one of the six customers. Thus, in the
perspective of the specific set of the six customers and in more
detail for customers with weighting vectors w1, w2, w5 products
p8 and p9 are considered similar while there is no apparent
similarity between p9 and p7, p12 according to their preferences.
Put differently, the reverse top-k set (for k=3) of products p9 and
p8 (i.e. the set of customers that have in their top-3 favorite list
product p9 and, respectively, product p8) include customers with
weighting vectors w1, w2, w5. Thus, the coexistence of the same
customers in the reverse top-k sets of two or more products is a
positive testimony for their similarity. This simple example shows
that the similarity between products can be quite different if we
take user preferences into account, than looking at the products as
individual points in their feature-space, isolated from the effects
of these user preferences.

In our work, we utilize the Jaccard coefficient to perform
similarity computations between the resulting sets of the reverse
top-k queries. An extended notion of similarity that further takes
into account the ranks of the products is also considered. We
complement these new similarity metrics with two query types
we introduce, termed θ-similarity and m-nearest neighbor queries
that are analogous to the well known range and nearest neighbor
queries, but differ in that they evaluate the similarity between
products by looking at their reverse top-k sets. Unfortunately,
reverse top-k queries are known to incur high computational
cost, meaning that a brute-force evaluation of these queries is
impractical, even for moderate data sets. In this work we identify
important properties of the reverse top-k results that allow us to
compute upper and lower bounds on the user-centric similarity
between products. Per these bounds, we are able to execute these
queries efficiently utilizing a conventional R-tree index on the
product space. We further discuss additional optimizations that
re-use previously computed reverse top-k sets in order to further
bound the similarity of products under investigation.

In summary, this paper makes the following contributions:

• We introduce a novel framework for user-centric similarity
search, which capitalizes on rankings of products based on

user preferences to discover similar products.
• We define two novel query types (θ-similarity and m-

nearest neighbor) for user-centric similarity search, iden-
tify effective score bounds (Section 3), and present effi-
cient query processing algorithms that prune the search
space by exploiting the derived bounds and traditional
index structures (Section 4).

• We explain how our techniques can be extended when
a different similarity metric is employed, which captures
user-centric similarity in a more fine-grained manner (Sec-
tion 5).

• We show that results computed while a query is being pro-
cessed can be exploited to derive more tight bounds, thus
greatly improving the performance of query processing
(Section 6).

• We perform a detailed experimental evaluation that
demonstrates both the efficiency and effectiveness of user-
centric similarity search (Section 7). A key finding of
our experiments is that by exploiting user preferences, we
often obtain very different results compared to traditional
similarity computations. In two user-studies that we con-
tacted on a real dataset, we found that in the majority of
the queries, the users preferred the results obtained via our
techniques.

In addition, we present definitions that help set up the simi-
larity framework (Section 2), we discuss related work (Section 8),
and we provide concluding remarks (Section 9).

2 PRELIMINARIES

In this section, we present definitions and preliminaries that we
utilize to better introduce and describe our techniques.

Given a data set P of products with d attributes, we define
each product as p = {p[1], p[2], . . . , p[d]} where p[i] is the value
of the i-th attribute. For a set C of customers with cardinality n,
a customer c ∈ C describes her preferences for the products’
attributes by a weighting vector w = {w[1], w[2], . . . , w[d]},
where weight w[i] denotes this customer’s preference for the i-
th attribute of every product p. We assume that both values of
attributes and customer’s preferences are positive real numbers
and without loss of generality we assume that

∑d
i=1 w[i] = 1.

In order to perform both top-k and reverse top-k queries, a
score function is required that ranks the products based on the
values of attributes p[i] and the customer’s preferences w[i]. The
weighted sum function, we referred to in the previous section, is
known as linear and assigns a score fw(p) =

∑d
i=1 w[i] ∗ p[i] to

product p for this customer.
A top-k query returns the k data items with the best scores1

and can be expressed as TOPk(w), where w is a d-dimensional
vector w = {w[1], ...w[d]} that represents preference values.

Definition 1 (TOP-k query). Given a positive integer k and
a user defined weighting vector w, the result set TOPk(w) of
the top-k query is the set of products such that TOPk(w) ⊂
P, |TOPk(w)| = k and ∀p1, p2 : p1 ∈ TOPk(w), p2 ∈
P − TOPk(w) it holds fw(p1) ≤ fw(p2)

Definition 2 (Dominance). Given two points p, q in Rd space, p
dominates q, p ≺ q, if ∀i with i = 1 . . . d, i 6= j is p[i] ≤ q[i]
and ∃ at least one j for which p[j] < q[j].

1. Without loss of generality, in this paper, lower scores are preferable in
top-k queries.
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We also use p � q to denote the case where either p dominates
q, or p and q coincide.

The dominance relationship between any two points p and q
(with p ≺ q) implies that for any increasing monotone function
f it holds that f(p) < f(q). Any score function that satisfies the
aforementioned property could be used for ranking the products
in our framework. In particular, the linear weighting function fw
is monotonically increasing. The following lemma captures this
property and indicates that a point that dominates another point
also has a better rank for any linear weighting function fw.

Lemma 1. Given two points p and q where p dominates or
coincides with q (p � q), it holds that for any linear weighting
function fw: fw(p) ≤ fw(q).

Moreover, in order to perform the similarity computations of
our example we should execute reverse top-k queries, which return
the weighting vectors of every customer for whom the product p,
which is given as input to the query, belongs to hers k-first top
ranking products. In contrast to a top-k query that takes as an input
a specific customer and is performed over the products data set,
a reverse top-k query receives as input a product and is executed
over the set of all users’ weighting vectors.

Definition 3 (Reverse top-k query). Given a product q and a
positive number k, as well as two data sets P and W of products
and weighting vectors respectively, a weighting vector wi ∈ W
belongs to the reverse top-k (RTOPk(q)) result set of q, if and
only if ∃p ∈ TOPk(wi) such that fwi

(q) ≤ fwi
(p).

A key property between the reverse top-k result sets of two
products is based on the concept of point dominance, as described
in the following lemma.

Lemma 2. Given two points p and q where p dominates q (p ≺ q),
it holds that RTOPk(q) ⊆ RTOPk(p).

Given the RTOPk results of every product in the data set,
we can evaluate the similarity between two products in a user-
centric manner by looking at their reverse top-k resulting sets. In
our motivational example, a possible similarity query would be:
”Which products have RTOPk results that are more than 80%
similar to the RTOPk set of a given product pi”. Of course,
the answer to this query involves the notion of similarity of the
RTOPk sets, that we have to define. Moreover, it suggests the
execution of reverse top-k queries for all the products of the data
set, something that is not applicable to large data sets. Another in-
teresting query that raises similar challenges is to execute Nearest
Neighbor searches over the products by considering theirRTOPk

results. In what follows we introduce an intuitive similarity metric
called the Jaccard coefficient that we exploit for the evaluation of
the similarity computations, we formally define our queries and
then discuss techniques for the efficient execution of them in large
datasets.

3 SIMILARITY & QUERIES

In this paper we introduce a user-centric approach for similarity
computation, in which the similarity of two products is defined
by taking into account the user preferences. Two products are
considered to be similar if they satisfy the same user preferences,
which in turn means that their reverse top-k sets are similar.

More formally, suppose a set of customers C . Each customer
ci has defined hers d preferences with a weighting vector wi. As

already explained, given a set of products P , a weighting vector
wi would be part of the result of the reverse top-k set of a product
q if the query point q is one of the k products that the top-k query
for customer ci returns.

In order to perform similarity computation over the products’
RTOPk sets we introduce a metric for the distance (i.e. similarity)
of these sets. A well known similarity function for sets of objects is
the Jaccard coefficient. The Jaccard coefficient measures similarity
between two sets as a fraction of the size of their intersection
divided by the size of the union of the two sets.

Definition 4 (User-centric Similarity). Given two products pi
and pj , the similarity sim(pi, pj) between pi, pj is com-
puted as the Jaccard coefficient of their corresponding RTOPk

sets: sim(pi, pj) = Jaccard(RTOPk(pi), RTOPk(pj)) =
|RTOPk(pi)∩RTOPk(pj)|
|RTOPk(pi)∪RTOPk(pj)|

As an example, Figure 1 depicts the non-empty reverse top-k
sets for all existing products, for k = 3. Let us consider the reverse
top-k sets for p1 and p2. The intersection of the two sets is of size
2, while their union of size 3. Thus, the user-centric similarity of
the corresponding products is sim(p1, p2) =

2
3 . Also, notice that

based on user-centric similarity sim(p1, p3) = sim(p1, p5) =
1
3 ,

which is quite different than when the Euclidean distance is used,
according to which p1 is much closer to p3 than p5.

In our framework we consider two query types that are anal-
ogous to the commonly used range and Nearest Neighbor queries
in the Euclidean space.

Definition 5 (θ-similarity(q) query). Given a query product
q and threshold θ such that θ ∈ [0, 1], the result set of the θ-
similarity query is the set of products such that sim(p, q) ≥ θ.

Definition 6 (m-NN(q) query). Given a query product q and
a positive integer m, the result set of the m-NN(q) is a set of
m products such that ∀p1, p2 : p1 ∈ m-NN(q), p2 ∈ P −m-
NN(q) it holds sim(p1, q) ≥ sim(p2, q).

Continuing our example depicted in Figure 1 and assuming
that q = p1 then p2 is closer to q than p3, while the inverse holds
for the Euclidean distance. Also, based on user-centric similarity,
p8 is more similar to q than p4, namely p8 is the 3-NN. In contrast,
using Euclidean distance, p4 is the 3-NN of q, while p8 is the 8-
NN.

In the discussion that follows we will (for brevity) represent
(virtually) each product’s pi reverse top-k result as a binary vector
rpi of size n, where n is the size of C . Bit j of vector rpi is set if
the j-th weighting vector wj , which represents the preferences of
the customer cj , belongs to the reverse top-k set of pi, otherwise is
clear. Since rp is a vector-representation of the corresponding set,
we will also denote the similarity computation as sim(pi, pj) =
|rpi∩rpj |
|rpi∪rpj |

using the vectors instead of the corresponding sets.

4 QUERY PROCESSING

In this section, we describe the indexing structure used for efficient
user-centric similarity search, we define upper and lower bounds
on the similarity of query point q to index entries, and we design
the similarity search algorithms.

4.1 Indexing
To facilitate efficient access to the product data set, a multidi-
mensional access method is required. In this work, we employ
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Fig. 2. RTOPk result sets of MBR’s M(l, u) corners.

the R-Tree [5], which is a popular multidimensional index widely
used for similarity search. The R-Tree organizes the products in
(hyper)rectangles called MBRs (Minimum Bounding Rectangles)
that form a tree hierarchy. At the lowest (leaf) level, each MBR
is defined as the minimum-sized rectangle that contains/encloses a
set of products, whereas at higher levels in the tree multiple MBRs
from the next level are grouped together and represented by a new
MBR that includes all the products of the group’s rectangles. Each
MBR M(l, u) is defined by two points, namely its lower corner l
and upper corner u, which have in each dimension the minimum
and maximum coordinates, respectively, among all points of the
MBR. Obviously, in the general case, the points l and u may not
be part of the data set, i.e., they may not correspond to actual
products.

In our work, we enhance the MBRs of the R-tree with
additional information, which consists of the reverse top-k sets
RTOPk(l) and RTOPk(u) of the lower and upper corner,
respectively. To illustrate this better, consider the example of
Figure 2, where for a hypothetical set of objects and a group of
users given the RTOPk(l), RTOPk(u) we construct the virtual
vectors rl and ru of an MBR in the way that we previously
described. The corners l and u have four common weighting
vectors(w1, w4, w6, w8) in their RTOPk sets. As a result, both
vectors rl and ru have a value of one to first, fourth, sixth and
eighth coordinate. However, there are many other w′is that belong
to one of the two products RTOPk sets but not to the other (e.g.,
w2).

Interestingly, as will be shown in the following, we can exploit
the binary vectors rl and ru of an MBR to bound the similarity
between a query point q and any product p contained in the MBR,
without computing the reverse top-k result of p.

4.2 Similarity Bounds

Given a query point q and an MBR M(l, u) defined by corners
l and u, we define upper and lower bounds on the similarity
sim(p, q) of q with any product p enclosed in this MBR (rq
is a binary vector with the reverse top-k result of point q).

Lemma 3. The upper bound of the Jaccard similarity of any point
p enclosed by an MBR M(l, u) with query point q is:
max sim(M, q) =

|rq∩rl|
|rq∪ru| .

Proof. For any point p enclosed in MBR M(l, u) it holds that l �
p and p � u. Based on the key property described in Lemma 2,
this means that rp ⊆ rl and ru ⊆ rp. It follows that rq ∩ rp ⊆
rq ∩ rl and rq ∪ ru ⊆ rq ∪ rp respectively. Then, sim(p, q) =
|rq∩rp|
|rq∪rp| ≤

|rq∩rl|
|rq∪rp| ≤

|rq∩rl|
|rq∪ru| = max sim(M, q).

Lemma 4. The lower bound of the Jaccard similarity of any point
p enclosed by an MBR M(l, u) with query point q is:
min sim(M, q) =

|ru∩rq|
|rl∪rq| .

Proof. Similar to the above.

We will exploit these bounds to design efficient algorithms for
user-centric similarity search, as will be shown next.

4.3 Algorithms
In what follows, we describe query processing algorithms for the
evaluation of the two query types introduced in Section 3. For both
queries, we assume that the set of products is indexed using an R-
tree extended to contain the RTOPk sets of the lower and upper
corner of each MBR M(l, u). For efficient computation of the
RTOPk sets, we utilize the RTA algorithm [4]. RTA expedites
query processing by discarding weighting vectors that cannot
belong to the result set of RTOPk(q), without evaluating the
corresponding top-k queries. As such, RTA reduces the number
of top-k evaluations, based on the observation that top-k queries
defined by similar weighting vectors return similar results [6].
For this reason, prior to query processing, the weighting vectors
are sorted based on their pairwise similarity. By exploiting this
order, RTA avoids processing top-k queries that correspond to
subsequent vectors in this order. During processing, a buffer
containing the k objects (results) of the previous top-k query that
was processed is used to discard subsequent vectors, if the objects
in the buffer are ranked higher than q.

RTA is not significantly affected when the cardinality of the
product space or the value of k increases [4]. On the other hand, in
case of increase of the weighting vectors cardinality, the number
of top-k evaluations necessary for the computation of the result
set of a RTOPk query also increase. In the worst case, the RTA
algorithm has to process |W | top-k queries, but in practice the
algorithm returns the correct result by evaluating much fewer top-
k queries than |W |. A lower bound of at least |RTOPk(q)| top-
k queries should be executed, since no weighting vector can be
added in the result set without evaluating the respective top-k
query.

4.3.1 θ−similarity Queries
By definition, the θ-similarity(q) query retrieves all products
p that satisfy the condition sim(p, q) ≥ θ. We will answer this
query utilizing the R-tree index by recursively expanding its nodes
in a top-down fashion, where a node is expanded only if it may
contain a candidate product for inclusion in the result set.

Algorithm 1 describes the pseudo code. A priority queue L is
used to traverse the R-tree recursively and L is initialized by the
root of the R-tree. The products that belong to the result set are
maintained in RES. During the search, in each iteration a node
is examined, and if it holds that min sim(M, q) ≥ θ, then all
nodes that belong to this MBR (the subtree of the current node)
are definitely part of the query result set. Thus, we recursively
visit the subtree and add all products indexed by it to the result
set (lines 2-4). In case the next node M is a leaf node, then
the Jaccard similarity of the indexed products to q has to be
computed. Therefore, for each indexed product a reverse top-k
query is executed, and if sim(p, q) ≥ θ the corresponding product
is added to the result set (lines 6-11). Finally, if M is a non-leaf
node, then M is expanded and its child nodes Mj are inserted into
L. Nodes Mj for which it holds that max sim(Mj , q) < θ can
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Algorithm 1 Theta Query(q, L, θ, RES)
Input: q is the query point

L is a priority queue
θ is the query parameter
RES is the result set

1: M = L.dequeue()
2: if min sim(M, q) ≥ θ then
3: RES = RES ∪ p, ∀p ∈ subtree(M)
4: end if
5: if M.type=LEAF then
6: for ∀pi ∈M do
7: rpi = executeRTOPk(pi)
8: if sim(pi, q) ≥ θ then
9: RES = RES ∪ pi

10: end if
11: end for
12: else
13: for ∀Mj ∈M do
14: if max sim(Mj , q) ≥ θ then
15: L.enqueue(Mj)
16: end if
17: end for
18: end if
19: if L is not empty then
20: Theta Query(q, L, θ,RES)
21: end if

be safely discarded. Thus, only the nodes Mj that may potentially
contain products that belong to the result set, based on the r
vectors of its MBR corners are inserted into L (lines 14-16), while
the remaining nodes are discarded. In the worst case, where there
is no pruning, the algorithm performs |P | RTOPk evaluations.
However, in the average case only a fraction of |P | queries has
a non-empty RTOPk set. A smaller value of k value results in
more empty RTOPk results sets that would be pruned by our
algorithm. In practice, the algorithm’s performance is dominated
by the complexity of RTOPk query’s execution algorithm (RTA),
which we have already described in detail in the previous section.

4.3.2 Nearest Neighbor Queries
Recall that the m-NN(q) query seeks to find the m most similar
products to a specific product q. In order to process the m-NN
query, we utilize an algorithm that performs a depth-first traversal
of the R-tree.

Algorithm 2 describes the pseudo code. In order to find the m
nearest neighbors of a given product q, our algorithm traverses the
R-tree, beginning from the root node, and searches the m products
pnn1

. . . pnnm
for which sim(pnni

, q) is maximized. A priority
queue L is used to provide access to the MBRs Mj in descending
order of their upper bound of similarity (max sim(Mj , q)). The
priority queue is initialized by the root of the R-tree. As long as
the m nearest neighbor have not been found and L is not empty,
the algorithm calls itself recursively (line 19). Each time the first
elementM ofL is removed. If it is a single product then it is added
to the list of nearest neighbors and the list is returned when its size
equals to m (line 6). The sorted access and the properties of the
upper bounds ensure us that nn list’s element are the m nearest
neighbors as no other product can have a higher similarity. When a
leaf nodeM of the R-tree is reached (line 8), a reverse top-k query
is executed for every product pi, that belongs to the specific MBR
M and the rpi

vector is populated (line 10). The products are also
inserted to the priority queue L and their upper bound is equal
to their actual similarity to the query product sim(pi, q). Finally,

Algorithm 2 Nearest Neighbor(q, L, m, nn)
Input: q is the query point

L is a priority queue
m is the number of Nearest Neighbors
nn is the list of Nearest Neighbors

1: M = L.dequeue()
2: if M.type=PRODUCT then
3: nn.add(M )
4: end if
5: if nn.size== m then
6: return nn
7: end if
8: if M.type=LEAF then
9: for ∀pi ∈M do

10: rpi = executeRTOPk(pi)
11: L.enqueue(pi)
12: end for
13: else
14: for ∀Mj ∈M do
15: L.enqueue(Mj) {L is maintained as a priority queue based

on the upper bounds max sim(Mj , q)}
16: end for
17: end if
18: if L is not empty then
19: Nearest Neighbor(q, L,m, nn)
20: end if

if the next node M is a non-leaf node, then M is expanded and
all MBRs Mj that are enclosed in M are inserted to the priority
queue L (lines 14-16).

An important feature of this algorithm is the sorted access em-
ployed. In more detail, pruning is achieved because our algorithm
ensures that nodes M for which it holds that the upper bound is
smaller than the similarity of them-th nearest neighbor pnnm (i.e.,
max sim(Mj , q) < sim(pnnm , q)) are never removed from L.
The entire sub tree of M will not be processed further, thus also
avoiding the overhead of processing its leaf-level MBRs and their
enclosed points. Perhaps more importantly, the respective reverse
top-k queries for the enclosed points are avoided. Also, we could
further increase pruning by maintaining an extra priority queue L′

of size m, that stores, in reverse order, the m higher similarity
values between the products that have already enqueued in L and
the query point. As a consequence, products or MBRs that they
would later be examined by algorithm, which similarity (i.e. upper
bound in case of MBR) with q is smaller than the value of the first
element of L′ can be pruned and do not enqueued in L reducing
algorithm’s storage cost.

In terms of complexity, as in the case of the θ-similarity
query’s algorithm, the presented algorithm would perform |P |
RTOPk queries in the worst case, but as shown in our experi-
mental study the number of RTOPk queries is much smaller in
practice, because of the effective pruning we utilize.

Example 2. As an example, we assume the R-tree depicted in
Figure 3 and a 1-NN query for a given point q. After expanding
the root node M1 of the R-tree (step 1), its children MBRs, namely
M2,M3 and M4, will be inserted in L (step 2). Then, M2 is
extracted from the top of the queue and its children nodes M5,M6

and M7 are added (step 3). The algorithm continues with the next
MBR at the top of the queue, which is M5. This is a leaf node and
contains three products (p1, p2, p5), their similarity with query
point q is computed and the products are inserted in L (step 4).
In our example we assume that p1 is the product with the highest



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

M11

M2 M3 M4
2

M5 3 M
12

{p13,p16}

M6 M9

{p10, p11}{p1,p2,p5}    {p3,p17}

        M7      M8

  {p18,p6,p8}    {p4,p7}

M
10

{p9,p12}

M
11

{p15,p14}

M1 M2  M3  M4  M5  M6  M7  M8 M9
 M10 M11

 M12   p1   p2 p5 p6 p8 p18

Maximum
bound  0.92 0.9  0.7  0.4  0.9  0.6  0.8  0.7 0.64  0.4  0.3  0.35  

 0.75  0.65  0.62 0.5  0.55 0.4
Minimum

bound 0.6 0.6  0.5  0.3  0.5  0.4  0.4  0.6 0.5  0.3  0.2  0.3

M1

M2 M3 M4
M

5, 
M

7, 
M

3, 
M

6,  
M

4

M7, p1, M3, p2, p5,
M

6, 
M

4

p1, M3, p2, p5, M6,
p8, p6, M4, p18

Fig. 3. NN algorithm’s R-tree traversal.

similarity, namely sim(p1, q) = 0.75. The algorithm continues
with the next top item in L (M7). The similarity of the products
in M7 with q is computed and they are enqueued in L (step 5).
Given that these products have a smaller similarity than p1 (see
table of fig 3 ), the algorithm terminates after p1 is removed from
L and product p1 is returned as the nearest neighbor to q.

5 EXTENDED JACCARD SIMILARITY

The result set of a top-k query is bounded to the k products
with the best score, while the reverse top-k result set cannot
be bounded; it can (in theory) become equal to the number of
customers or it can even be empty. Put differently, a reverse top-k
query could possibly return no weighting vector (customer) for
a given product. In the case of products with small or empty
reverse top-k sets, the similarity estimation could be insufficient
or impossible. A workaround to this problem would be to increase
the value of parameter k enlarging this way the size of the reverse
top-k sets. However, this could lead to inaccurate estimation of
similarity, caused by the fact that the Jaccard coefficient does not
take into account the actual ranking of the product in the top-k list
of a customer, who belongs to the product’s RTOPk set. Thus,
the Jaccard coefficient may consider two products similar, even if
the customers rank the first one in high positions and the second
one in much lower positions. Such discrepancies become more
evident, when the value of parameter k increases.

In order to alleviate this limitation of the Jaccard coefficient,
we propose an extended schema that takes into account the actual
ranking position of a product in the top-k set of a customer. In a
nutshell, instead of assigning one as the value of coordinate rp[i],
in case customer ci belongs to the reverse top-k set of product p,
we assign a positive value that is derived from the ranking position
of the product in the customer’s list. This results in vectors rp
consisting of real positive numbers instead of binary values. In this
way, two products that are ranked in similar positions by a group of
customers are considered more similar by extended Jaccard than
any other product which ranking is quite different by the same
customers.

Let ranki(p) denote the ranking of product p in the top-k list
of customer ci. It holds that 1 ≤ ranki(p) ≤ k. The coordinates
of vector rp are non-negative numbers derived from the following
formula:

rp[i] =


1

ranki(p)
, if p belongs in the top-k list

of customer ci
0, otherwise

where each coordinate is defined as the inverse of a product’s rank.
Obviously, without loss of generality, any other non-negative,
decreasing function can be used instead of the inverse function,
as long as it implies that products ranked higher in the list (i.e.,
smaller score) will be assigned larger values.

The original Jaccard coefficient cannot be used to compute
the similarity between non-binary vectors. We thus utilize the
extended Jaccard coefficient, which is applicable to any kind of
real vectors A, B and computes their similarity by the following
formula (· stands for the inner-product operator):

extJaccard(A,B) =
A ·B

‖A2‖+ ‖B2‖ −A ·B

In our setting, we use the extended Jaccard coefficient
to denote the similarity of two products, based on the de-
rived vectors of two products pi and pj : ext sim(pi, pj) =
extJaccard(rpi

, rpj
)

Having defined the similarity between products, what remains
is a way to derive upper and lower bounds for their similarity. We
suggest that the bounds for the similarity ext sim(p, q), where p
is any product that belongs to a specific MBR M(l, u) and q is
the query point, are given by the following formulas:

ext max sim(M, q) =
2 ∗ rl · rq
r2u + r2q

ext min sim(M, q) =
ru · rq
r2l + r2q

where ru and rl are the vectors for corners u and l of a specific
MBR M(l, u) respectively, which are defined similarly to rp.

In the proofs presented below, we show the correctness of
the formulas for the similarity bounds. Both these proofs rely on
Lemma 1.

Lemma 5. The upper bound of the extended Jaccard similarity of
any point p enclosed by an MBR M(l, u) with query point q is:
ext max sim(M, q) =

2∗rl·rq
r2u+r2q

.

Proof: We prove that: extJaccard(rq, rp) ≤ 2∗rl·rq
r2u+r2q

We
know that

extJaccard(rq, rp) =
rp · rq

r2p + r2q − rq · rp
≤ 1

Adding the same positive amount (specifically rp · rq ≥ 0)
in both the denominator and the numerator of the fraction above,
whose value is lower than one and both the denominator and the
numerator are positive numbers, its value is getting greater. More
formally, suppose that a

b < 1 and, thus, a < b for a, b > 0. It
holds that ac < bc, ∀c > 0 and, similarly, ab + ac < ab + bc.
This means that a(b+ c) < b(a+ c) and, thus, a

b <
a+c
b+c .

Thus, the following inequality holds.

extJaccard(rq, rp) ≤
rp · rq + rp · rq

r2p + r2q − rp · rq + rp · rq

=
2 ∗ rp · rq
r2p + r2q

Since l � p and p � u, then based on Lemma 1 it holds that
for any linear weighting function fw: fw(l) ≤ fw(p) ≤ fw(u),
which means that for any customer cj : rankj(u) ≥ rankj(p) ≥
rankj(l), and equivalently ∀i : ru[i] ≤ rp[i] ≤ rl[i]. Thus,
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we replace rp with ru, rl in the denominator and in the nu-
merator respectively. Thus, extJaccard(rq, rp) ≤ 2∗rl·rq

r2u+r2q
=

ext max sim(M, q)

Lemma 6. The lower bound of the extended Jaccard similarity of
any point p enclosed by an MBR M(l, u) with query point q is:
ext min sim(M, q) =

ru·rq
r2l +r2q

.

Proof: We prove that: extJaccard(rq, rp) ≥ ru·rq
r2l +r2q

It
holds that

extJaccard(rq, rp) =
rp · rq

r2p + r2q − rq · rp
≥ rp · rq
r2p + r2q

Since l � p and p � u, then based on Lemma 1 it holds that
for any linear weighting function fw: fw(l) ≤ fw(p) ≤ fw(u),
which means that for any customer cj : rankj(u) ≥ rankj(p) ≥
rankj(l), and equivalently ∀i : ru[i] ≤ rp[i] ≤ rl[i]. Thus,
we replace rp with ru, rl in the denominator and in the nu-
merator respectively would be: extJaccard(rq, rp) ≥ rl·rq

r2u+r2q
=

ext min sim(M, q)

6 OPTIMIZATIONS

A potential drawback of the previously presented algorithms, is
that each time a leaf-level MBR M is visited, a reverse top-k
query needs to be processed for each product enclosed in M . This
induced cost is a substantial contributor to the overall processing
cost of the algorithms. In this section we present optimizations
that seek to minimize the number of reverse top-k computations
resulting in faster query processing.

In order to minimize the number of reverse top-k evaluations,
we exploit the result sets of already evaluated reverse top-k queries
in order to obtain tighter upper and lower similarity bounds for
(any product p enclosed by) a leaf MBR M and query point q. By
utilizing the updated bounds, we manage to prune many points of
a given leaf MBR without computing their reverse top-k sets, as
soon as we are certain that they cannot be part of the query result.

More technically, every time a RTOPk(pi), query is per-
formed, where pi is a product enclosed by a leaf MBR M , its
result set rpi is maintained in an in-memory R-tree I . Before
computing the reverse top-k query of a newly visited product p, we
first retrieve a carefully selected subset of vectors rpi from I , and
exploit them to update the bounds (details will be given in what
follows) for the value of sim(p, q) (or ext sim(p, q)). In the
case of a θ-similarity query, we can discard p without performing
a reverse top-k query for it, in case the updated upper bound is
lower than the defined threshold. In the case of a m-NN query,
the updated upper bound may push p further back in the priority
queue, postponing the computation of its reverse top-k query or
completely avoiding it, if the m-NN products are found first.

6.1 Tighter Similarity Bounds
Given a point p that is going to be processed and a set of points
(maintained with an in-memory R-tree I) with already computed
reverse top-k sets, the question is how to tighten the bounds of p.
Figure 4 illustrates an example that helps explaining this process.
Let {p1, . . . , pf} denote the already computed points located in
the two boxes defined by (a) the origin of the axes and p (lower
box), and (b) p and the maximum corner of the data space (upper
box). We claim that only a subset of these points need to be
employed to update the bounds of p. From the upper box, we

1

7

2

4

3

5

6

1

2

9

8

Fig. 4. Example of necessary points to compute tighter bounds.

need only the points that belong to the skyline with respect to p.
We denote this set of points Domd(p), since they are dominated
by p. In the Figure, Domd(p) = {p6, p7}. From the lower box,
we need only the points that belong to the skyline with respect
to p, if we consider p as the origin of the space. We denote
this set of points Dom(p), since they dominate p. In the figure,
Dom(p) = {p3, p4, p5}.

We compute the intersection of reverse top-k results of points
in Dom(p), and the union of reverse top-k results of points in
Domd(p). Let rDom(p) and rDomd(p) denote the corresponding
binary vectors. Our claim is that these vectors can be utilized
to compute tighter bounds for p, as explained by the following
lemmas. (If one of these sets happens to be empty, then the
corresponding bound is not updated.)

Lemma 7. Given a point p and the set of points pi ∈ Dom(p),
it holds that RTOPk(p) ⊆

⋂
∀pi∈Dom(p)RTOPk(pi)

Proof: It holds that ∀pi ∈ Dom(p): pi ≺ p. Moreover,
from Lemma 2 we derive that: ∀pi : RTOPk(p) ⊆ RTOPk(pi).
According to set theory it holds that: if A ⊆ B and A ⊆ C ,
then A ⊆ B ∩ C . Consequently, it holds that RTOPk(p) ⊆⋂
∀pi∈Dom(p)RTOPk(pi).

Lemma 8. Given a point p and the set of points pi ∈ Domd(p),
it holds that

⋃
∀pi∈Domd(p)RTOPk(pi) ⊆ RTOPk(p)

Proof: It holds that ∀pi ∈ Domd(p): p ≺ pi. More-
over, from Lemma 2 we derive that: ∀pi : RTOPk(pi) ⊆
RTOPk(p). According to set theory it holds that: if B ⊆ A
and C ⊆ A, then B ∪ C ⊆ A. Consequently, it holds that⋃
∀pi∈Domd(p)RTOPk(pi) ⊆ RTOPk(p).

According to Lemmas 7 and 8, we are able to define a virtual
MBR M∗ that contains p, whose lower corner’s vector is equal to
rDom(p) and higher corner’s vector is equal to rDomd(p) vector.
Then, we compute the max sim(M∗, q) and min sim(M∗, q)
to query point q, as we have presented in section 4.2, replacing rl
with rDom(p) and ru with rDomd(p), respectively.

In the case of extended Jaccard, by utilizing the set Dom(p),
we compute the rDom(p) assigning to its i-th coordinate the
highest value (i.e., lowest ranking) that appears in the i-th position
of the products’ vectors that belong to the Dom(p) set. For the
construction of rDomd(p) vector we set the i-th coordinate equal
to the lowest value (i.e., highest ranking) among the values of
products’ vectors contained in Domd(p) set. Thus, we define a
virtual MBRM∗that contains p, with its lower and higher corner’s
reverse top-k sets represented by the rDom(p) and rDomd(p), re-
spectively. Using the formulas for the similarity bounds presented
in section 5 we compute the bounds, by again replacing rl with
rDom(p) and ru with rDomd(p).
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6.2 Improved Query Processing
Based on the above, we improve the performance of our query
processing algorithms by updating the bounds of a point, before
we execute the reverse top-k query. In more detail, when our
algorithms reach a leaf MBR, a set of reverse top-k queries
needs to be processed (one for each enclosed point). Before we
execute each query for point p, we first retrieve sets Dom(p) and
Domd(p) by querying the in-memory R-tree I , compute vectors
rDom(p) and rDomd(p) respectively, and update the bounds of p
as described above. Since the bounds become more tight, we can
often avoid the execution of the reverse top-k query.

6.3 Handling Updates
Each time a new customer c is inserted, we need to perform a
TOPk query for c and update appropriately the r vectors of
those MBR corners which are affected by the insertion of that
customer. In more detail, there is no change for the r vectors of
MBR corners that are dominated by the kth product in the favorite
list of customer c. Thus, we evaluate an RTOPk query for those
corners of R-tree’s MBRs which are not dominated by the kth
product in the TOPk result set of customer c. On the other hand,
when a customer is deleted, we only set to zero the entries of all
the r vectors that refer to the specific customer.

When a new product p is added to the data set P , we increase
by one all the non-zero values of the r vectors, which represent
MBR corners that are dominated by p. For those r vectors, rep-
resenting the RTOPk set of MBR corners that dominate p, there
is no action. All the remaining r vectors should be recomputed
performing an RTOPk query for the corner they represent. If
a product p is deleted, we follow the same process as above.
The only difference is that we decrease instead of increase the
non-zero values of the r vectors, which represent MBR corners
that are dominated by p. In order to minimize the cost by the
RTOPk queries that need to be executed, we may perform a batch
mode insertion/deletion of products. This would lead to only one
RTOPk query execution for every MBR corner, no matter what
the number of insertions/deletions in data set P is. In case of two
or more R-tree nodes are merged or an R-tree node splits, we
execute an RTOPk for all the corners of the new MBRs created
after the merge/split process.

7 EXPERIMENTAL EVALUATION

In this section, we first describe the results of two user study
evaluations that we performed in order to assess the effectiveness
of our proposed method. We then present an extensive experi-
mental evaluation of the proposed user-centric similarity search
algorithms on various datasets. All variants of the presented
algorithms are implemented in Java and the experiments ran on
a desktop PC with an i7 CPU (4 cores, 3.4 GHz), 8GB RAM, and
128GB SSD.

7.1 User Studies Evaluation
We first initiated a small user study, where 30 academic users
(i.e. Ph.D. students and faculty) were asked to answer a ques-
tionnaire. We utilized a basketball dataset, which contains five
statistics (points, rebounds, assists, steals, blocks) of the annual
performance of NBA players. We selected five users and we asked
each one of them to define a weighting vector that expresses
their preferences about the performance of a center/forward NBA

player. We then asked them to do the same for the case of players
in a point/shooting guard position. We then selected randomly 20
queries/players (10 players from each group of center/forwards -
point/shooting guards) and we executed our 1 − NN algorithm
using the extended Jaccard metric, in order to obtain the most
similar player for every query. Then, all the 30 users were asked
to choose between the 1−NN that our method returned and the
1 − NN obtained according to the Euclidean distance similarity
metric. In most cases (13 out of 20 queries) the majority of users
chose the player that our method suggested. Only for five queries
the majority of the users selected the player that the method using
the Euclidean distance similarity metric returned. For the two
remaining queries both methods’ results are chosen by the same
number of users.

In order to evaluate this use case scenario on a larger pop-
ulation, we utilized the well known crowd sourcing platform
CrowdFlower and we launched a task asking from 220 contrib-
utors/users to answer each one of the aforementioned questions.
A distinct difference from the previous study is that the group
of 30 users that were initially used had been selected based on
their familiarity with NBA. On the other hand, we had no control
on the selection of contributors that performed the user study on
the crowd sourcing platform. Still, the results were quite similar.
Our method’s suggestions were chosen by the majority of the
users for 10 questions, while in one question the two alternatives
were selected by the same number of users. Even though for the
remaining 9 queries the users chose to select the answer suggested
by the Euclidean distance, we observed that in many cases the
differences in the user’s opinions between that selection and our
method’s suggestion were small. On the contrary, for 6 out of 10
queries 70% or more of the the users preferred our method. For
the Euclidean distance, there was only one query where more than
65% of the users had chosen that result. We believe that the results
from the two user studies are encouraging and we leave a more
thorough evaluation on this and other datasets as feature work.

7.2 Experimental Setup

Data sets. In the experimental study, we employ both real and
synthetic data sets. In the case of synthetic data sets, we generated
products using uniform (UN) and clustered (CL) distributions.
In either case, the generated values of each attribute belong to
the [0, 10K] range. For the UN data set, all attribute values are
generated independently using a uniform distribution. In order to
create the CL data set, we first createCS cluster centroids and then
we generate d values (assigned to each one of the data vector’s
coordinates) that follow a normal distribution with variance σ2

S ,
and a mean equal to the corresponding coordinate of the centroid.
The data set P is indexed using a disk-resident R-tree with block
(node) size set to 8KB and a buffer of 100 nodes.

We also used four real data sets namely NBA, WINE, COLOR
and HOUSE. NBA consists of 17265 5-dimensional tuples repre-
senting the statistics of NBA players for five different categories.
WINE is a 10-dimensional data set from UCI Machine Learning
Repository that contains the values of ten characteristics (i.e. al-
cohol, magnesium, color intensity, total phenols) of 6497 different
types of wines. COLOR consists of 68040 9-dimensional tuples
describing features of images in HSV color space. HOUSE is
a 6-dimensional data set, that contains the percentage of 127930
American families’ annual income spent on 6 types of expenditure
(i.e. gas, electricity, water, heating).
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Fig. 5. θ−Similarity Queries Performance.
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Fig. 6. m−NN Queries Performance
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Fig. 7. θ-Similarity Queries Performance Varying Threshold θ.

For the data set W of the weighting vectors, we used a
clustered (CL) distribution. For its creation, first CW cluster
centroids that belong to the (d-1)-dimensional hyperplane, defined
by

∑
wi = 1, are selected randomly. Then, each coordinate is

generated on the (d-1)-dimensional hyperplane by following a
normal distribution on each axis with variance σ2

W , and a mean
equal to the corresponding coordinate of the centroid. For both W
and P datasets we used the clustered (CL) distribution with five
clusters and variance 0.052 as the default setting.

Algorithms. We evaluate our user-centric similarity search
algorithms (θ-similarity and m-NN) both for the Jaccard and the
extended Jaccard similarity metric. We also implemented the vari-
ant that exploits already processed RTOPk queries (maintained
in an in-memory R-tree) to improve the bounds, as described in
Section 6. The contents of this in-memory R-tree are discarded
after completion of the corresponding query. Experiments using
the in-memory R-tree are depicted using the “-IMR” suffix in the
labels of the corresponding graphs.

Metrics. Our main metrics include: a) the number of reverse
top-k queries processed, b) the query execution time required by
each algorithm, and c) the similarity simUC,EU of the result to
the answer that would have been obtained by using the Euclidean
distance. This similarity is expressed as the Jaccard coefficient of
the result sets (number of common products in the answers over
the size of their union) of the corresponding queries. For the m-
NN queries in Euclidean space we used the algorithm of [7]. For

the range queries we executed a Euclidean NN query for the same
product q the θ-similarity query examines and retrieved as many
products as the size of the θ−similarity query’s result set. In our
experimental evaluation, a value of simUC,EU that is much lower
than one indicates that the user-centric similarity query (m-NN/θ-
similarity) returns significantly different answers.

Queries. We present average values over 20 queries in all
cases. The query points are randomly selected from a subset of
the data points in P . To increase the probability of having non-
empty result sets, this subset contains either the closest to axes
origins products of P in case of synthetic data set, or products
from the skyline set of P for the real data sets.

Parameters. We conduct experiments varying the dimension-
ality d (2-6), the cardinality |P | (10K-100K), the cardinality |W |
(1K-15K), the value of k (50-150), the value of θ (0.7-0.95) and
the data distributions for P . We set the default values for the
experimental parameters as follows: k = 100, |W | = 1000,
θ = 0.9, d = 4 and m = 10.

7.3 Experimental Results

Uniform vs Clustered set P . In Figure 5 we study the perfor-
mance of the θ−similarity queries for the two different data sets.
The variant of the proposed algorithm for θ−similarity queries,
which utilizes the in-memory R-tree, reduces the RTOPk evalua-
tions significantly (at least three times less), as shown in Figure 5a.
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Fig. 8. θ-Similarity Queries Performance Varying k.
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Fig. 9. m-NN Queries Performance Varying k.
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Fig. 10. θ-Similarity Queries Performance Varying d.
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Fig. 11. m-NN Queries Performance Varying d.

In consequence, this reduces execution time (Figure 5b). Figure 5c
serves as a comparison of user-centric similarity search with
traditional similarity search using the Euclidean distance. The
chart clearly shows that the retrieved results are different. Figure 6
repeats the experiment, using this time m-NN queries, for both
cases of data distribution. The same trends, as in the case of
θ−similarity queries, between the original algorithm and the one
that uses the in-memory R-tree are observed.

Varying θ. In Figure 7 we study the sensitivity of θ−similarity
queries, when varying the threshold value θ. Higher similarity
threshold values result in a slight decrease in the number of
RTOPk executions (Figure 7a) as well as the execution time
(Figure 7b). When we consider the similarity between the results
sets of proposed queries and similarity queries in Euclidean space,

in Figure 7c, we observe that higher threshold values increase the
similarity of the two result sets.

Varying k. The effect of the increase in values of k to our
algorithms is shown in Figures 8, 9. A key observation is that
the execution time (Figures 8b, 9b) increases with k as an effect
of the cost implied by the reverse top-k queries execution. The
reason is that each reverse top-k query has a larger result set
and becomes more expensive, since users have more products in
their top-k result sets. The number of RTOPk (Figures 8a, 9a) is
also increasing for higher values of k. When metric simUC,EU is
considered (Figures 8c, 9c), we observe that the higher the values
of k the lower the similarity between the results of user centric
queries and similarity queries in Euclidean space. In case of m-
NN queries we cannot observe the same trend because of the
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Fig. 12. θ-Similarity Queries Performance Varying W , |P |=10K.
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Fig. 13. m-NN Queries Performance Varying W , |P |=10K.
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Fig. 14. θ-Similarity Queries Performance Varying W , |P |=100K.
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Fig. 15. m-NN Queries Performance Varying W , |P |=100K.

extremely low similarity of the aforementioned result sets.
Varying dimensionality d. Figures 10, 11 present the behavior

of the algorithms, while the dimensionality of data sets increases.
Increasing dimensionality generally results in increased number
of RTOPk executions (Figures 10a, 11a) as well as increased
execution times (Figures 10b, 11b). Results also tend to be
more dissimilar compared to those obtained using the Euclidean
distance (Figures 10c, 11c), as a result of the increased sparsity
that tends to put products further apart in higher dimensions.

Varying |W |. Figures 12-15 depict the behavior of our algo-
rithms for increasing values of |W | in case two different instances
for data set P are utilized (the first one has the default size, while
the second is much larger with |P | = 100K). In both scenarios,

when the size of W increases, the execution time also increases
(Figures 12b, 13b, 14b, 15b) because of the higher execution cost
of each RTOPk query imposed by the increasing number of
weighting vectors that needs to be examined to obtain its result set.
Both, the number of RTOPk executions and simUC,EU are not
especially affected by the increase of |W | presenting a relatively
stable behavior as it is depicted in Figures 12a, 13a, 14a, 15a and
Figures 12c, 13c, 14c, 15c, respectively. Moreover, we show that
the execution time for both of the algorithms is dominated by the
time cost of RTOPk queries execution. In Figures 12b, 13b inner
boxes with the dashed-lined borders present the time consumed
during our algorithms execution for the evaluation of the RTOPk
queries. Regarding the time cost for the computation of both
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Fig. 16. θ-Similarity Queries Performance using Jac-IMR.
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Fig. 17. θ-Similarity Queries Performance using ext Jac-IMR.
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Fig. 18. m-NN Queries Performance using Jac-IMR.
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Fig. 19. m-NN Queries Performance using ext Jac-IMR.

skyline and dominated sets utilized by algorithms’ IMR variants
are so small (i.e. varies from 300 to 500 msecs) that is not visible
in the plots.

Real Data Sets. In Figures 16-19, we present results for the
in-memory R-tree variants of our methods, using the real data sets
and varying the values of threshold and m for the θ−similarity
and m-NN queries, respectively. Results from all the four real
data sets confirm the study with the synthetic data sets, as they
follow the same trends with the number of RTOPk evaluations
and execution time decrease when the threshold increases. In
Figures 16c, 17c, 18c and 19c, we can observe the low values of
simUC,EU for all the real data sets, especially the extremely low
values for the HOUSE dataset in case of them-NN queries (up to

7%), showing clearly that different results can be obtained when
exploiting the user preferences for similarity search. Moreover, in
Figures 20, 21 we present the performance for all the variants of
our methods utilizing the WINE dataset while we vary the value
of k. As in the case of synthetic datasets, we observe that when
we increase k the query execution time for both of our algorithms
increases (figures 20b, 21b) while the simUC,EU decreases in
θ−similarity query (Figure 20c) and remains relatively stable
(Figure 21c) for the m-NN query. In Figures 22, 23, when we
vary value of |W | for the WINE dataset, our methods performance
follow the same trend as in sensitivity analysis study we performed
using synthetic datasets. Thus, in Figures 22c, 23c is shown
that simUC,EU is not especially affected for both query types



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

 0

 200

 400

 600

 800

 1000

50 100 150
k

 

Jac-IMR
Jac

ext_Jac-IMR
ext_Jac

(a) #RTOPk Evaluations

 0

 20

 40

 60

 80

 100

 120

 140

50 100 150
k

 

Jac-IMR
Jac

ext_Jac-IMR
ext_Jac

(b) Execution Time (secs)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50 100 150
k

 

Jaccard
ext_Jaccard

(c) simUC,EU

Fig. 20. θ-Similarity Queries Performance Varying k (WINE Dataset).
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Fig. 21. m-NN Queries Performance Varying k (WINE Dataset).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

5000 10000 15000
W

 

Jac-IMR
Jac

ext_Jac-IMR
ext_Jac

(a) #RTOPk Evaluations

 0

 500

 1000

 1500

 2000

 2500

5000 10000 15000
W

 

Jac-IMR
Jac

ext_Jac-IMR
ext_Jac

(b) Execution Time (secs)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

5000 10000 15000
W

 

Jaccard
ext_Jaccard

(c) simUC,EU

Fig. 22. θ-Similarity Queries Performance Varying W (WINE Dataset).
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Fig. 23. m-NN Queries Performance Varying W (WINE Dataset).

while execution time (Figures 22b, 23b) and number of RTOPk

(Figures 22a, 23a) increase for higher values of |W |.

8 RELATED WORK

Top-k queries are a long studied topic in the database and
information retrieval communities. Such queries return the k most
promising products, based on available user preferences [6], [8].
The work of [9] addresses the problem of measuring the quality
of top-k result sets returned by an information retrieval system, as
is the case of comparing search engine results. The authors dis-
cuss several alternative measures and provide fast approximation
algorithms for the evaluation of some of them. On the other hand,
reverse top-k queries, introduced in [4], return the users that place
a product (that is the query point) in their top-k result sets. A use

for reverse top-k queries is to identify influential products, where
influence is defined as the cardinality of the reverse top-k result
set [10]. This definition of influence is useful for market analysis,
since it is directly related to the number of customers that value a
particular product. Despite recent techniques for evaluating reverse
top-k queries, they are known to incur significant processing and
I/O overhead, as such a query typically requires the execution of
multiple top-k queries for computing the customers that prefer the
queried product.

Another important class of queries are the Reverse Nearest
Neighbor (RNN) queries [11], that are complement to the well
known Nearest Neighbor queries [7]. The RNN queries are of
particular interest in a wide range of applications such as decision
support systems, profile based marketing and document databases.
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A RNN query returns all objects whose k nearest neighbors
contain the query object. The classical motivating example [12]
of RNN is the decision support task of identifying the optimal
location for a new store. Given several location choices, the
strategy is to pick the location that can attract the maximum
number of customers. A RNN query returns the customers who
are likely to choose the new store because of its geographical
proximity over the existing stores. There are several approaches
for the implementation of RNN queries [13], [14]. There are also
algorithms that work for higher dimensionality data sets [15].
What we suggest in our work is quite different from the similarity
introduced and utilized in RNN queries, where the results are
based solely on objects’ characteristics while users’ preferences
are not taken into account.

Item-based collaborative filtering techniques [16] may share
a similar intuition, but in contrary to our methods, they suggest
that customers have a taste of some products and thus rate them.
Suppose, the case of a product that recently launched in the market
or a product is under designing during its manufacturing process.
In both cases, there would be no ratings expressing customers’
opinions, making a collaborative filtering algorithm inapplicable.
On the other hand, our framework does not require any previous
knowledge about users’ opinions for the products because they
express in a more general way their preferences providing a
weighting factor for each attribute of products, which is different
than rating individual products.

9 CONCLUSION

In this paper we introduced a user-centric similarity framework
in which the similarity of products is assessed by taking into
account user preferences. We demonstrated via examples and
through our experiments that user-centric similarity search can
yield quite different results than using conventional metrics that
only look at the products, in isolation to the preferences their
customers have expressed. We identified two interesting query
types and we proposed efficient algorithms for their execution.
We also discussed optimizations that help reduce execution times.
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