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ABSTRACT
Spatial-keyword queries are important for a wide range of applica-

tions that retrieve data based on a combination of keyword search

and spatial constraints. However, efficient processing of spatial-

keyword queries is not a trivial task because the combination of

textual and spatial data results in a high-dimensional representation

that is challenging to index effectively. To address this problem, in

this paper, we propose a novel indexing scheme for efficient sup-

port of spatial-keyword range queries. At the heart of our approach

lies a carefully-designed mapping of spatio-textual data to a two-

dimensional (2D) space that produces compact partitions of spatio-

textual data. In turn, the mapped 2D data can be indexed effectively

by traditional spatial data structures, such as an R-tree. We propose

bounds, theoretically proven for correctness, that lead to the design

of a filter-and-refine algorithm that prunes the search space effec-

tively. In this way, our approach for spatial-keyword range queries

is readily applicable to any database system that provides spatial

support. In our experimental evaluation, we demonstrate how our

algorithm can be implemented over PostgreSQL and exploit its

underlying spatial index provided by PostGIS, in order to process

spatial-keyword range queries efficiently. Moreover, we show that

our solution outperforms different competitor approaches.

CCS CONCEPTS
• Information systems→ Data structures; Geographic informa-
tion systems.

KEYWORDS
Spatial keyword search, Data transformation, Spatial data

ACM Reference Format:
Panagiotis Tampakis, Dimitris Spyrellis, Christos Doulkeridis, Nikos Pelekis,

Christos Kalyvas, and Akrivi Vlachou. 2021. A Novel Indexing Method for

Spatial-Keyword Range Queries. In 17th International Symposium on Spatial
and Temporal Databases (SSTD ’21), August 23–25, 2021, virtual, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3469830.3470897

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SSTD ’21, August 23–25, 2021, virtual, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8425-4/21/08. . . $15.00

https://doi.org/10.1145/3469830.3470897

1 INTRODUCTION
During the last decade, the combination of GPS-enabled mobile

devices, mobile internet and social networking has led to the gen-

eration of huge spatio-textual data sets, where data objects contain

both location information as well as textual descriptions. Twitter

and Flickr are prominent examples of social networking applica-

tions that collect geotagged content daily, in the form of short

messages and photos respectively. On the other hand, the amount

of geotagged content on the Web has also increased dramatically.

For example, points-of-interest (e.g., hotels, restaurants, etc.) are

geotagged and some studies [8] have reported that approximately

20% of all Web queries also have location constraints, i.e., also refer

to the location of a geotagged web page. As a result, scalable man-

agement and querying of spatio-textual data has attracted a lot of

attention recently [3, 4, 6, 17].

In order to support efficient retrieval of spatio-textual data,

spatial-keyword queries are used and several efficient query pro-

cessing algorithms have been proposed. In this work, we focus on

spatial-keyword range queries, where given a query q that consists

of a location (q.x ,q.y) and a set of keywords Q , the objective is

to retrieve all spatio-textual objects within distance r from q and
having keyword set similarity above a user-specified threshold τ . This
query type offers more flexibility than boolean spatial-keyword

range queries [5, 7, 13, 15] that impose exact matching on the key-

words that describe each object. Nevertheless, efficient processing

of spatial-keyword queries requires the use of specialized access

methods [8, 9, 14, 16, 18, 20, 22] that combine spatial and text index-

ing techniques in a joint index, a challenging topic due to the high

dimensionality of spatio-textual representations. Unfortunately,

these index structures typically have high memory or disk require-

ments due to the integration of spatial with textual information, and

moreover they are not supported in existing database management

systems.

Motivated by this limitation, in this work, we propose a novel

indexing method for spatio-textual data that supports efficient pro-

cessing of spatial-keyword range queries. In contrast to existing

approaches that devise new index structures, we propose a carefully-

designed mapping of spatio-textual data to a two-dimensional (2D)

space, where one dimension is used to represent spatial distance

and the other textual similarity. Our work is inspired by the iDis-

tance technique [11, 21] from spatial databases that indexes the

distance rather than the actual location of objects. One of the main

technical challenges addressed in this paper is how to map the
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keyword descriptions to 1D values in a way that supports efficient

retrieval. Intuitively, the proposed mapping generates data parti-

tions in the 2D space that contain objects with small distances and

common keywords, thus preserving data locality. As a result, any

traditional spatial index, such as an R-tree, can be used to index

the transformed data, thus alleviating the need for specialized in-

dex structures. Furthermore, our approach is directly applicable

to existing database management systems that provide built-in 2D

indexes, such as PostGIS, MySQL, Oracle, etc.

Capitalizing on the proposed mapping, we propose a novel

method for processing spatial-keyword range queries. First, we

prove the existence of lower and upper bounds for search, which can

be exploited in order to derive an efficient processing algorithm that

prunes the search space. Then, we present a filter-and-refinement

algorithm, called ST2D, for spatial-keyword range queries that is-

sues a set of window queries in the transformed 2D space and is

provably correct. Moreover, we present an improved version, called

PPR_ST2D, which uses proximity-aware partition reordering in or-

der to process a single window query and return the correct result

set. We implement our algorithms on top of PostgreSQL to show

the feasibility of our approach, and we show the gain in terms of

performance. Also, in our experiments, we compare against other

mappings for spatio-textual data, such as [15] that generates 1D

values, and show the benefits of our approach.

In brief, we make the following contributions in this paper:

• We propose a novel method that transforms spatio-textual

object to points in a 2D space, which can be effectively in-

dexed using traditional spatial access methods.

• We provide appropriate search bounds for spatial-keyword

range queries in the transformed space, in order to prune the

search space and avoid processing unnecessary data objects,

and prove the correctness.

• We develop an algorithm (ST2D) for query processing of

spatial-keyword range queries in the transformed space

using multiple window queries, as well as an extension

(PPR_ST2D) that improves data locality in the spatial dimen-

sion and requires a single window query.

• We demonstrate the efficiency of our algorithms, imple-

mented in PostgreSQL, in comparison with suitable com-

petitors using two real-life data sets.

The rest of this paper is structured as follows: Section 2 provides

an overview of our approach. Then, in Section 3, we describe the

mapping scheme which enables representing spatio-textual data in

a 2D space. Section 4 presents the query processing algorithm ST2D,
together with appropriate bounds for the search space that guaran-

tee correctness. Section 5 presents an extension called PPR_ST2D
that improves data locality in the spatial dimension. Section 6 re-

ports our experimental evaluation, while Section 7 describes the

related work. Finally, we conclude the paper and sketch future

research directions in Section 8.

2 OVERVIEW
Consider a data set D of spatio-textual data objects, where each

object p is associated with a spatial location (p.x ,p.y) as well as
a set of keywords (tags) denoted with P . We use capital letters

(P ,Q) to denote the keyword sets associated with an object (p,q).

Symbol Description
D Data set of spatio-textual objects

p ∈ D Spatio-textual object, e.g., p = {p.x ,p.y, P}
q Query object q = {q.x ,q.y,Q}

P ,Q Sets of keywords for object p,q (resp.)

r Distance threshold

τ Textual similarity threshold

Ci (Ki , ri ) Spatial cluster with centroid Ki and radius ri
V = {t1, t2, . . . , t |V |} Vocabulary of keywords in D

Vi ,Vj Disjoint subsets of V
c, c ′ Constants used by iDistance

|C | Number of spatial partitions

k Number of text partitions

Table 1: Table of symbols.

Given a query q that consists of a location (q.x ,q.y) and a set of

keywords Q , the spatial-keyword range query retrieves all objects

within distance r and having keyword set similarity above τ , as
defined in the following.

Definition 2.1. (Spatial-keyword range query): Given a query

point q, a spatial range r , a set of query keywords Q , and a tex-

tual similarity threshold τ , the spatial-keyword range query re-

trieves all spatio-textual objects p ∈ D, such that: dist(p,q) ≤ r and
sim(P ,Q) ≥ τ .

In this work, we use the Euclidean distance function for the

spatial domain, and we use the Jaccard similarity for the textual set

similarity. Other distance functions are supported in a straightfor-

ward way. However, extending our work for other text similarity

functions is left for future work. Table 1 provides the main symbols

used in this paper.

Figure 1: Overview of mapping approach.

Our approach maps the given data objects to data points in a

transformed 2D space. The problem is challenging due to the high

dimensionality of the original space where data objects are repre-

sented, and this is mainly due to the presence of textual information.

Figure 1 presents a graphical overview of our approach, with the

data set D depicted on the left, whereas the transformed 2D space is

shown on the right. In summary, we map the location information
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in one dimension (horizontal axis), and the textual information in

another dimension (vertical axis). Essentially, in the transformed

2D space, the objects form spatial partitions based on their pair-

wise distances, as well as textual partitions (in the example {t1, t2}
and {t3, t4, t5}) based on grouping together subsets of frequently

co-occurring keywords. While each object belongs to a single spa-

tial partition, it may be assigned to multiple textual partitions. For

example, objects p1, p2 and p3 are assigned to the same spatial par-

tition because they form a spatial cluster in the original space. On

the other hand, objects p3, p4 and p9 are duplicated to both textual

partitions depicted in Figure 1, because they contain keywords from

both textual partitions. The technical details on how this mapping

is performed are presented in the next section.

After having obtained the transformed data set, we propose

a query processing algorithm that operates on the transformed

data and prunes the search space using appropriate bounds, in

order to retrieve the exact result set. For this purpose, we follow a

filter-and-refine approach that operates in the transformed space.

For the filtering step, we present a technique that transforms a

spatial-keyword range query to a set of 2D window queries in the

transformed space, in a way that it is guaranteed that the correct

result is going to be retrieved if these rectangular areas are searched.

In the refinement step, we check whether the data objects present

in these areas are truly query results.

Our proposed approach has two main advantages. First, the

data in the transformed space can be indexed by any traditional

access method designed for 2D and does not need any specialized

index for spatio-textual data. Many commercial systems support

indexing of 2D data, such as Postgres or MySQL. Secondly, our

transformation also partitions the data based on their similarity so

that the partitions can be used for parallel query processing in big

data frameworks, such as Hadoop or Spark.

In the following, we present the mapping technique for spatio-

textual data to 2D values (Section 3), the query processing algorithm

(Section 4), as well as an extension (Section 5).

3 DATA MAPPING
Our objective is to transform spatio-textual data objects to data

points in a two-dimensional (2D) space, which can be indexed using

traditional 2D access methods. To this end, the spatial information

and the textual information are mapped to two one-dimensional

(1D) values, respectively.

Our approach is based on iDistance [11, 21], an indexing method

for similarity search, with main rationale to index the distance

between points, instead of their locations. However, iDistance

has been proposed for multi-dimensional numeric data and is not

straightforward how to generalize for spatio-textual data. In the

following, we describe briefly the iDistance mapping for spatial

data (Section 3.1) and then we present our adaptation that makes it

applicable for textual data (Section 3.2).

3.1 Mapping the Spatial Information
As already mentioned, in order to handle the spatial dimensions,

we employ the iDistance technique [11, 21]. Consider a partitioning

of the data space into clusters, and each clusterCi is represented by
a reference object Ki (e.g., its centroid) and a radius ri , which is the

distance of the farthest point assigned toCi fromKi . Any clustering
algorithm can be used for the partitioning of the data points. Thus,

each point is assigned to the nearest cluster center and mapped to

a 1D value according to the distance to its cluster’s reference object.

The main idea is that 1D values of points that belong to different

clusters should be assigned to different 1D ranges, thus a (large

enough) constant c is used to separate individual clusters and the

iDistance value for an object p ∈ Ci is defined as:

iDist(p) = i · c + dist(Ki ,p) (1)

Expecting that c is large enough, all objects in cluster Ci are
mapped to the interval [i · c, (i + 1) · c]. Additionally to the 1D

values, the cluster centroid Ki and the radius ri of each cluster are

maintained, in order to facilitate query processing.

Figure 2: Example of iDistance.

Practically, iDistance transforms the problem of spatial range

search to an interval search problem as follows. For a spatial range

query, defined by a location q and a radius r , each cluster Ci that
satisfies the inequality dist(Ki ,q) − r ≤ ri

1
must be visited, as it

may contain points within distance r from q. For each such cluster

Ci , an interval search is initiated on: Ii = [low,hiдh], where:

Ii .low = i · c +min{dist(Ki ,q) − r , 0}

Ii .hiдh = i · c +max{dist(Ki ,q) + r , ri }

The data points whose iDistance values belong to the interval Ii
are retrieved. Note that these data objects belong to the cluster Ci .
For the retrieved points pi the actual distance to the query point is

evaluated and thereafter, if the inequality dist(pi ,q) ≤ r holds, pi
is added to the result set.

Example 3.1. Figure 2 shows a range query and two intersecting

clusters C1 and C2. The points belonging to cluster Ci are mapped

to the interval [i · c, (i + 1) · c], using a large enough value of c , so
that the respective intervals are disjoint. Since the depicted range

query intersects with both C1 and C2, two 1D intervals need to be

searched. These two intervals I1 and I2 are depicted with bold lines

on the axis representing the mapped (iDistance) values in the 1D

space.

1
Henceforth also mentioned as intersection of the range query (q, r ) and the cluster

Ci .
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3.2 Mapping the Textual Information
LetV denote the vocabulary of the data set, i.e.,V = {t1, t2, . . . , t |V |},
where ti represents a keyword of the vocabulary. Our objective is to
partition V in k disjoint subsets of keywords. The way to partition

V is orthogonal to the proposed approach. A naive approach would

be to randomly create k disjoint subsets of V , whose union makes

V , i.e.,Vi ∩Vj = ∅ and
⋃
Vi = V . Ideally, we would like to partition

V in such a way that there exists no data object p in the data set that

contains keywords from more than one subsetVi . This is important

because if a data object belongs to more than one partitions, then

the data object needs to be replicated. In the following, we describe

a keyword partitioning approach that minimizes the overlap of

keyword sets.

3.2.1 Generating the Textual Partitions. In order to capture the

co-occurrence of keywords in spatio-textual objects, we build the

keyword co-occurrence graph. Then, we apply a graph partitioning

algorithm in order to generate the desired subsets of keywords

{V1,V2, . . . ,Vk }. These can be considered as the textual partitions

of the data set.

The keyword co-occurrence graph is an undirected, weighted

graph that contains as vertices the keywords from the vocabularyV .

An edge between two keywords (vertices) is added if these keywords

co-occur in at least one spatio-textual object. The weight of an

edge is set equal to the number of objects in which the respective

keywords co-occur. The process of graph construction is of linear

complexity O(n) to the number n (= |D |) of spatio-textual objects
and is provided in Algorithm 1.

Algorithm 1 Keyword co-occurrence graph construction

1: Input: Data set of spatio-textual objects D = {p1, . . . ,pn }
2: Output: Keyword co-occurrence graph G
3: for p ∈ D do
4: for each pair of keywords ti , tj in P do
5: create vertices for keywords ti and tj , if they do not exist

6: if exists edge between vertices ti , tj then
7: increase the weight of edge (ti , tj ):wi j = wi j + 1

8: else
9: add edge (ti , tj ) with weightwi j = 1

10: end if
11: end for
12: end for
13: return G

As soon as the graph is constructed, the second step is to invoke a

graph partitioning algorithm. Although different algorithms can be

applied, we employ METIS [12], which is a widely-used algorithm

for graph partitioning. As a result, the vertices of the graph (key-

words) are assigned into k groups, in such a way that keywords

that frequently co-occur together are placed in the same group.

Consequently, we obtain k disjoint partitions {V1,V2, . . . ,Vk } of
the vocabulary V , where each partition Vi contains a subset of the
keywords of vocabulary V .

3.2.2 Mapping the Keywords of a Spatio-textual Object. A spatio-

textual data object p may contain keywords from different (say

ℓ ≥ 1) subsetsVi . Thus, in contrast to the spatial iDistance, we need

to assign such a spatio-textual object p to ℓ partitions. Therefore, p
is replicated ℓ times in the transformed data set. This is necessary

in order to ensure the correctness of the computed result set for

any spatial-keyword range query.

For a given spatio-textual data object p (with keyword set P ) and
a partition Vi for which it holds that P ∩ Vi , ∅, we define a 1D
similarity value val(P ,Vi ) based on the following equation:

val(P ,Vi ) =
|P ∩Vi |

|P |
(2)

which practically “distributes” the size of the overlap between sets

P and the vocabulary V to those partitions Vi that have P ∩Vi , ∅.
In fact, val(P ,Vi ) represents the size of the overlap normalized over

the size of P .

Example 3.2. Consider a vocabulary V = {t1, t2, . . . , t9} and
let us assume ℓ=2 disjoint partitions: V1 = {t1, . . . , t5} and V2 =
{t6, . . . , t9}. For an object p with P = {t1, t4, t6, t7, t8}, its similarity

value based on V1 is val(P ,V1) =
|P∩V1 |

|P | =
2

5
. Similarly, it holds

that val(P ,V2) =
|P∩V2 |

|P | =
3

5
. In this way, we distribute the normal-

ized overlap of p to the two partitions, according to the overlap of

keyword set P with the keywords in the partitions V1 and V2.

The next step is to assign similarity values of data points for

different partitions Vi ,Vj to disjoint 1D intervals of the textual di-

mension. Thus, the textual similarity values val(P ,Vi ) are mapped

to 1D values in such away that only data objects that have keywords

that belong to the partition Vi are mapped to the same interval.

Expecting that c ′ is large enough, similar to the concept of the

spatial iDistance, all data objects p with keywords belonging to the

partition Vi (P ∩Vi , ∅) are mapped to the 1D values:

iSim(p,Vi ) = i · c
′ + val(P ,Vi )

The remaining question is how to bound the value val(P ,Vi ). Put
differently, how to determine the intervals that correspond to data

objects p for which it holds that sim(P ,Q) ≥ τ for a given query

q. Given a query q and a keyword partition Vi with overlapping

keywords to q, i.e., Q ∩ Vi , ∅, for a data object p it holds that

P ∩ Vi , ∅ and sim(P ,Q) ≥ τ , if val(P ,Vi ) is within the interval

Ji = [low,hiдh], where:

Ji .low = i · c
′ +minscorei

Ji .hiдh = i · c
′ +maxscorei

whileminscorei andmaxscorei are defined in the following lemma.

Lemma 3.3. Given a query q and a keyword partition Vi , such
that Q ∩Vi , ∅, for any data object p for which sim(P ,Q) ≥ τ and
P ∩Vi , ∅, it holds that val(P ,Vi ) ∈ [minscorei ,maxscorei ], where:

minscorei = τ −
|Q ∩ (V −Vi )|

|Q |
(3)

maxscorei =
|Q ∩Vi |

|Q |
+ 1 − τ (4)

Proof. The intersection |P ∩ Q | of keyword sets P and Q can

be split in two parts. The first part represents the keywords that

also belong to partition Vi , while the second part represents the

remaining keywords:

|P∩Q | = |P∩Q∩(Vi∪(V −Vi ))| = |(P∩Q∩Vi )∪(P∩Q∩(V −Vi ))| =
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|P ∩Q ∩Vi | + |P ∩Q ∩ (V −Vi )|

Thus, we can write sim(P ,Q) as follows:

sim(P ,Q) =
|P ∩Q |

|P ∪Q |
=
|P ∩Q ∩Vi |

|P ∪Q |
+
|P ∩Q ∩ (V −Vi )|

|P ∪Q |
(5)

Lower bound: Because it holds that: |P ∩Q ∩Vi | ≤ |P ∩Vi | and
|P ∪Q | ≥ |P |, we derive from Eq. 5:

sim(P ,Q) =
|P ∩Q ∩Vi |

|P ∪Q |
+
|P ∩Q ∩ (V −Vi )|

|P ∪Q |
≤

|P ∩Vi |

|P |
+
|P ∩Q ∩ (V −Vi )|

|P ∪Q |
≤

val(P ,Vi ) +
|P ∩Q ∩ (V −Vi )|

|P ∪Q |

because: val(P ,Vi ) =
|P∩Vi |
|P | (by definition). Similarly, since: |P ∩

Q ∩ (V −Vi )| ≤ |Q ∩ (V −Vi )| and |P ∪Q | ≥ |Q |, we further derive
that:

sim(P ,Q) ≤ val(P ,Vi ) +
|Q ∩ (V −Vi )|

|Q |

Thus, we can rewrite the latter inequality as follows:

val(P ,Vi ) ≥ sim(P ,Q) −
|Q ∩ (V −Vi )|

|Q |

which eventually leads to:

val(p,Vi ) ≥ τ −
|Q ∩ (V −Vi )|

|Q |
= minscorei

Upper bound: Because it holds that |P ∩Q ∩Vi | ≤ |Q ∩Vi | and
|P ∪Q | ≥ |Q |, we derive from Eq. 5:

sim(P ,Q) =
|P ∩Q ∩Vi |

|P ∪Q |
+
|P ∩Q ∩ (V −Vi )|

|P ∪Q |
≤

|Q ∩Vi |

|Q |
+
|P ∩Q ∩ (V −Vi )|

|P ∪Q |

Furthermore, since it holds that: |P ∩Q ∩ (V −Vi )| ≤ |P ∩ (V −Vi )|
and |P ∪Q | ≥ |P |, we have:

sim(P ,Q) ≤
|Q ∩Vi |

|Q |
+
|P ∩ (V −Vi )|

|P |
=

|Q ∩Vi |

|Q |
+
|P ∩V |

|P |
−
|P ∩Vi |

|P |

Moreover, |P ∩V | ≤ |P | and val(P ,Vi ) =
|P∩Vi |
|P | (by definition), we

derive:

sim(P ,Q) ≤
|Q ∩Vi |

|Q |
+ 1 −

|P ∩Vi |

|P |
=
|Q ∩Vi |

|Q |
+ 1 − val(P ,Vi )

Thus, we can rewrite the latter inequality:
|Q∩Vi |
|Q | +1−val(P ,Vi ) ≥ τ ,

which leads to:

val(P ,Vi ) ≤
|Q ∩Vi |

|Q |
+ 1 − τ = maxscorei

□

The consequence of this Lemma is that for a given query q with

query keywords Q : (a) we only need to search in those textual

partitions Vi that have common keywords with Q (i.e., Q ∩Vi , ∅),
and (b) for each such textual partition Vi , we need to search only

within the bounds of Eq. 3 and 4 defined in Lemma 3.3.

2

3

4

5

6

7

8

9

100 150 200 250 300 350 400 450 500

Restaurants

latitude
25 30 35 40 45 50

lo
n

gi
tu

d
e

-120

-110

-100

-90

-80

-70

Daphne Café
38.19198813 -79.937563
Greek, Mediterranean, Diner, Italian 

Daphne Café

Daphne Café

Figure 3: Mapping spatio-textual objects to a two-
dimensional (2D) space.

Example 3.4. Figure 3 illustrates the overall approach graphically.
At the bottom right, the spatial distribution of the data set is depicted

in the geographical 2D space. At the left, a spatio-textual object p,
called “Daphne Café”, is shown with its coordinates (p.x ,p.y) and
its textual description P={Greek, Mediterranean, Diner, Italian}. At

the top left, the keyword co-occurrence graph is depicted, where

textual partitions are depicted using different colors. Finally, at the

top right, the transformed 2D data space is shown, and the spatio-

textual objects are mapped to regions of the 2D space. Notice the

arrows that indicate how textual partitions (on the vertical axis) and

spatial clusters (on the horizontal axis) correspond to 1D intervals

of values. Also, note that object p is mapped to two points in the

transformed space, because its keywords have been assigned to two

distinct textual partitions (denoted with purple and green colours

respectively).

4 QUERY PROCESSING
We assume that the spatio-textual data objects in data set D are

transformed to a 2D space (as described earlier) and indexed by

a traditional spatial index (such as an R-tree) that supports range

queries.

Algorithm 2 describes the ST2D algorithm for spatial-keyword

range query processing in the transformed 2D space. Our approach

adheres to the filter-and-refinement methodology. In particular, the

filtering phase is described in lines 4–8, while the refinement phase

corresponds to lines 9–13. In the following, we explain the two

phases in more detail.

Filtering in theTransformed Space.A spatial-keyword range

query q, defined by location (q.x ,q.y), query keywords Q , as well
as distance threshold r and textual similarity threshold τ , is trans-
formed to a set of window queries in the transformed 2D space.

With respect to the spatial dimension of the transformed space,

for each clusterCi (Ki , ri ) that intersects with the circle centered at

(q.x ,q.y) and radius r defined by the spatial part of the query, we
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Algorithm 2 ST2D: Spatial-keyword range algorithm in trans-

formed space

1: Input: Query q, radius r , similarity threshold τ
2: Output: Result set R
3: R ← ∅, cand ← ∅
4: I = {I1, . . . ,In } ← 1D intervals for spatial dimension

5: J = {J1, . . . ,Jm } ← 1D intervals for textual dimension

6: for (each pair (Ii ,Jj )) do
7: cand ← cand∪WindowQuery(Ii ,Jj ) {Filter step}
8: end for
9: for (p ∈ cand) do
10: if (dist(p,q) ≤ r and sim(P ,Q) ≥ τ ) then
11: R ← R ∪ p {Refinement step}
12: end if
13: end for
14: return R

need to retrieve the data objects with iDistance values belonging

to the interval Ii as defined in Section 3.1. Obviously, when the

query intersects more than one clusters, we obtain a set of intervals

{I1,I2, . . . }, as many as the intersecting clusters with the query

(line 4).

With respect to the textual dimension of the transformed space,

for each partition Vi that has at least one common term with the

query keywords Q , i.e., Vi ∩ Q , ∅, we obtain an interval that

needs to be searched. For partitionVi , the interval Ji is obtained, as
described in Section 3.2. Again, multiple such intervals {J1,J2, . . . }

are defined, as many as the partitions Vi that have at least one

common term with the query keywords (line 5).

Finally, assuming n intervals {Ii } and m intervals {Ji }, the

spatial-keyword range query is equivalent ton·mwindow queries in

the transformed space. These queries correspond to the rectangles

[Ii ,Jj , ] for i ∈ [1,n] and j ∈ [1,m], and can be efficiently processed

by exploiting a traditional 2D index, such as an R-tree (lines 6–8).

Refinement Phase. All data objects retrieved by the window

queries are candidate objects for the result setR. From the candidate

results p ∈ cand , only those satisfying the inequality dist(p,q) ≤ r
are results with respect to the spatial constraint. Also, the candidate

object must satisfy the textual similarity constraint, i.e., sim(P ,Q) ≥
τ . A candidate object is a result of the spatial-keyword range query,

only if it satisfies both constraints, otherwise it is dismissed as false

positive. This is checked in the refinement phase of the algorithm

(lines 9–13).

On a final note, recall that an object may be duplicated in the

transformed 2D space due to the fact that its keywords match

different textual partitions. Thus, during query processing, when

an object is retrieved from window query, it is processed further

only if it has not already been retrieved from another window query,

otherwise it is immediately discarded. This is checked whenever

we add an object to the candidate result set.

5 PROXIMITY-AWARE PARTITION
RE-ORDERING

As already mentioned, ST2D provides an efficient solution to the

problem of spatial-keyword range query processing by mapping

the spatial and textual dimension to a transformed 2D space and

employing a filter-and-refinement methodology. However, a pos-

sible bottleneck that might affect the efficiency of this solution

when implemented inside a DBMS, is the multiple (n ·m) index

look-ups (lines 4-8, Algorithm 2) that take place due to the different

1D intervals for the spatial and textual dimension.
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Figure 4: Proximity-aware spatial partition re-ordering.

Assuming n intervals {Ii } for the spatial dimension, andm inter-

vals {Ji } for the textual dimension, a straightforward way to deal

with this is to get the minimum (min(Ii .low) andmin(Jj .low)) and
maximum (max(Ii .hiдh) andmax(Jj .hiдh)) bounds of intervals I
and J and create a new pair of intervals B = (Ii ,Jj ) that corre-

sponds to the minimum bounding rectangle of the initial rectangles

[Ii ,Jj , ] for i ∈ [1,n] and j ∈ [1,m]. Nevertheless, as depicted in

Figure 4 (left), the different intervals for each dimension might not

be continuous or even close to each other. Consequently, utilizing

B to perform the filtering will lead to having a large number of

“irrelevant” data returned by the filtering phase (false positives),

which in turn will lead to a more “expensive” refinement phase.

Algorithm 3 PPR_ST2D: Spatial-keyword range algorithm in trans-

formed space with proximity-aware parition re-ordering

1: Input: Query q, radius r , similarity threshold τ
2: Output: Result set R
3: R ← ∅, cand ← ∅
4: I = {I1, . . . ,In } ← 1D intervals for spatial dimension

5: J = {J1, . . . ,Jm } ← 1D intervals for textual dimension

6: calculate B of I and J

7: cand ←WindowQuery(B) {Filter step}
8: for (p ∈ cand) do
9: if (dist(p,q) ≤ r and sim(P ,Q) ≥ τ ) then
10: R ← R ∪ p {Refinement step}
11: end if
12: end for
13: return R
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For this reason, we propose the proximity-aware partition re-

ordering solution, where the goal is to order spatial partitions in

such a way that partitions that are “close” to each other in the

original 2D Euclidean space, will also be close to the transformed

iDistance-based 1D space, as illustrated in Figure 4 (right). Based on

Equation 1, this can be regulated by the i parameter, which serves as

the spatial cluster identifier (ID). Hence, we need to re-order clusters

IDs in such a way so that clusters that have spatial proximity will

have consecutive or at least close IDs. To achieve this, we utilize a

space-filling curve, and more specifically z-order (however other

space-filling curves might also be applied), on each reference object

Ki of the clusters. Subsequently, we order the clusters by the z-order
of their reference points and re-assign the cluster ids i based on this

order, where i ∈ [1, |C |] and |C | is the number of spatial clusters.

By doing so, as described in Algorithm 3 (PPR_ST2D), during
the filtering phase we perform a single look-up in the spatial index

(line 7), instead ofn ·m, wheren is the number of 1D intervals for the

spatial dimension andm the 1D intervals for the textual dimension.

PPR_ST2D exploits the proximity-aware partition reordering so

as to reduce the number of irrelevant data objects retrieved. The

refinement procedure remains the same (lines 8-12).

6 EXPERIMENTAL EVALUATION
In this section, we present the results of the experimental evalu-

ation of our approach. All the experiments were conducted in an

Intel(R) Core(TM) i7-8750H CPU (2.20GHz), with 16GM of RAM

and 1TB of disk. The mapping algorithms were implemented in

Java, while the actual range query was implemented in PL/SQL.

For our experimental study we utilized PostgreSQL 13 and PostGIS,

with the default settings. Technically, the data objects are stored

in a table and the queries are implemented in PL/SQL. The R-tree

spatial index was implemented inside PostgreSQL by utilizing the

GiST inteface, while the inverted indexes using the GIN interface.

6.1 Experimental Setup
For our experimental study, we employed two real data sets of

spatio-textual objects, namely Booking and Factual. The former data

set, is a set of 200,000 descriptions of hotels crawled from the site of

Booking.com
2
. The data set contains |V | = 188 distinct keywords.

The average, minimum and maximum number of keywords per

object in the Booking data set are 18, 0, 106 respectively. The latter

data set, is a set of 104,444 descriptions of restaurants and hotels

located in North America, crawled from Factual
3
. The data set

contains |V | = 199 distinct keywords. The average, minimum and

maximum number of keywords per object in the data set D are 10,

1, 47 respectively.

Algorithms. For our experimental study we are going to utilize

2 baseline solutions to the problem of spatial-keyword range query

(spatial_first and best_first), the solution proposed in [15] (STbHI ),
the solution presented in Section 4 (ST2D) and the improved solution

presented in Section 5 (PPR_ST2D).
Concerning spatial_first, we initially filter spatially the data set,

by employing the R-tree index provided by PostGIS and for the

2
http://www.booking.com

3
https://www.factual.com/

Parameter Values
Data set size |D | x2, x4, x6, x8, x10

Query radius r (in km) 0, 2, 4, 6, 8, 10
Textual similarity threshold τ 0, 0.2, 0.4, 0.6, 0.8, 1
# of query keywords |Q | 1, 2, 3, 4, 5

# of spatial partitions |C | (in thousands) 0.5, 1, 1.5, 2, 2.5, 3
# of textual partitions k 5, 10, 15, 20, 25, 30

Table 2: Parameter values (default in bold).

resulting spatio-textual points we verify the textual predicate. Re-

garding best_first, in addition to the R-tree spatial index we built an

inverted index on the keyword set and utilize it in order to filter out

spatio-textual objects whose keyword sets do not intersect with the

keyword set of q. Furthermore, we let the DBMS select the order

that the predicates (spatial and textual) will be evaluated.

Also, the solution proposed in [15], STbHI, maps the spatial

information to 1D using a space-filling curve (z-order). Then, each

keyword gets concatenated with this 1D value and an inverted index

is built on this set, thus duplicating objects as many times as the

number of keywords. This approach favors the textual dimension

during query processing, as the keyword precedes the 1D value in

the string representation. Then, for each spatio-textual query point

q, the spatio-textual objects of D that contain at least one keyword

are retrieved, by utilizing the inverted index and then the spatial

predicate gets evaluated by mapping the location of q in 1D, using

the same space-filling curve, and translating the spatial query into

a range query on the z-order values.

Methodology. Initially, we evaluate the scalability of the pro-

posed solutions by increasing the data set size and measure the

execution time. Subsequently, we compare the performance of the

solutions that we employed for our experimental study. Succes-

sively, we investigate the effect of setting different values to r and τ
to the execution time. Next, we examine how the number of query

keywords (|Q |) affects the performance of the proposed solutions.

Finally, we investigate the effect of the number of spatial partitions

|C | and the number of textual partitions k to the performance of

ST2D and PPR_ST2D. The different parameter values are depicted

in Table 2, while their default setting is depicted in bold.

Queries. For each experiment we perform 200 queries and use

the median execution time. Each query is generated by randomly se-

lecting an already existing spatio-textual point from the respective

data set. In the experiment where we vary the number of keywords,

we first filter the data set and keep only the spatio-textual points

that have a specific number of keywords and then we randomly

select the ones that are used. The query radius r and the similarity

threshold τ are set based on the parameters of the experiment, as

depicted in Table 2.

6.2 Results
6.2.1 Scalability. As already mentioned, initially, we vary the size

of our data set and measure the execution time of the algorithms.

To study the effect of data set size, we focused on the Booking data

set, which is almost double in size than Factual, and we created 5

portions (x2, x4, x6, x8, x10) of the original data set of increased sizes
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up to 2M objects. As the data set size increases, it is expected that

the execution time will increase too. In order to measure the factor

of this increase, for each portion Di of the data set with i ∈ [1, 5],

we calculate SlowDown =
TDi
TD

1

, where TD1
is the execution time of

the first portion (i.e. x2) and TDi the execution time of the current

one. As illustrated in Figure 5(a), all of the solutions scale linearly

with the size of the data set. However, we can observe two distinct

groups based on scalability, a group consisting of spatial_first and
STbHI, that appear to have linear scalability and another group that

consists of best_first, ST2D and PPR_ST2D, that seem to exhibit a

slightly better performance in terms of scalability.
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Figure 5: Scalability when varying the data set size (a) in
terms of SlowDown and (b) Execution time.

Furthermore, as depicted in Figure 5(b), it can be observed that

spatial_first performs worse than the other 4 approaches and by

almost an order of magnitude slower than ST2D and PPR_ST2D.
This behavior is somewhat expected since in best_first we utilize
both a spatial and a textual index. Moreover, we allow the DBMS

to utilize the query optimizer and choose the evaluation order of

the predicates. Furthermore, STbHI prioritizes the textual part of
the query, which has better selectivity than the spatial part of the

query since in the Booking data set we have 188 distinct keywords.

This also supported by the examining the extreme cases where

r = 0 and τ = 0, as depicted in Figures 6(a) and (c), where in the

former spatial_first outperforms STbHI and in the latter is the other

way around. Furthermore, in ST2D and PPR_ST2D the spatial and

textual information are mapped in 2D space and then the R-tree

spatial index is utilized for both the spatial and textual dimension.

For the same reasons, best_first, ST2D and PPR_ST2D outperform

STbHI, since in best_first the order of predicates is selected by the

query optimizer and in ST2D and PPR_ST2D the spatial and textual

information are treated equally. In addition, it can be observed that

ST2D performs worse than best_first and PPR_ST2D mostly due

to the fact that for each query the we need to perform multiple

look-ups on the spatial index, as described in Algorithm 2. Finally,

we can see that PPR_ST2D outperforms all of the other approaches

since it filters more efficiently the data set by employing the data

mapping technique presented in Section 3 and on top of this it

performs one look-up per query, which speeds up significantly the

filtering phase of the query.

6.2.2 Sensitivity Analysis. Subsequently, we study the effect of the

spatial predicate on the execution time. Towards this direction,

we set different values to r while keeping the values of the other

parameters fixed. In more detail, as delineated in Figures 6(a) and (d),

the larger the r , the higher the execution time of the query for all 5

approaches. Next, we vary the values of the textual predicate τ while
keeping the values of the other parameters fixed. As presented in

Figures 6(b) and (e), the spatial_first, best_first and STbHI solutions,
does not seem to be affected by τ . On the other hand, we can

observe a decreasing trend in ST2D and PPR_ST2D as τ increases.

This behaviour is caused by the fact that both of these solutions

utilize the textual information more efficiently at the filtering stage

of the query, since the adopt the mapping technique presented in

Section 3. Hence, the more “strict” the query becomes, as far as

it concerns the textual information, the less data qualify for the

filtering step.

Concerning the special case where r = 0, we can observe that the

spatial_first solution performs equally well as the PPR_ST2D, since
it initially performs the spatial filtering by utilizing the R-Tree index,

which in turn leads to a very “light” refinement phase. On the other

hand, ST2D does not perform very well due to the large number

of look-ups in the index. Moreover, best_first performs slightly

worse than spatial_first, since it depends on the query optimizer to

select the order of predicates, while spatial_first always chooses
to filter the spatial dimension first. Finally, STbHI performs worse

than spatial_first, best_first and PPR_ST2D, since it prioritizes the
textual dimension. Considering the special case where τ = 0, we

observe that the spatial_first solution performs worse, since it does

not filter the search space efficiently. Moreover, even though STbHI
prioritizes the textual dimension, it does not incorporate into the

search the Jaccard similarity, hence it first retrieves all the records

that contain the specific keywords and then evaluate their Jaccard

similarity. On the contrary, ST2D and PPR_ST2D perform a lot better

since they both incorporate the Jaccard metric in the search, by

adjusting accordingly the upper and lower bound of the search

range of the textual dimension in the transformed 2D space.

Moreover, we examine how the number of query keywords af-

fects the execution time. As illustrated in Figures 6(c) and (f), it

appears that there is an increasing trend in the execution time as

the number of query keywords increase for all 5 approaches.

Finally, we investigate the effect of the number of spatial and

textual partitions to the execution time of ST2D and PPR_ST2D. Re-
garding the number of spatial partitions, as illustrated in Figure 7(a),

it does not seem to affect either the ST2D or the PPR_ST2D solutions.

On the other hand, concerning the number of textual partitions,

we can observe an obvious increasing trend in the execution time

as the number of textual partitions increase to both ST2D or the

PPR_ST2D, as depicted in Figure 7(b). This is due to the fact that, as

the number of textual partitions increase, the amount of replicated

data will also increase, since each spatio-textual data object can be

assigned to multiple textual partitions, as explained in Section 3.2.2.

7 RELATEDWORK
Due to the popularity of spatial-keyword queries and their wide

applicability in practical scenarios, several approaches have been

proposed to support efficient query processing [3, 4, 6, 17].

There exist some approaches for mapping spatio-textual data to

lower dimensional representations, in particular 1D alphanumeric
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Figure 6: Execution timewhen varying the spatial predicate on (a) theBooking and (d) the Factual data set, the textual predicate
on (b) the Booking and (e) the Factual data set and the number of query keywords on (c) the Booking and (f) the Factual data
set.
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Figure 7: Execution time when varying the number of (a)
Spatial and (b) Textual partitions.

values, which can be used as keys by data access mechanisms that

support key-based retrieval. For example, ST-HBase [15] maps the

spatial information to 1D using a space-filling curve and concate-

nate each keyword with the 1D value, thus duplicating objects as

many times as the number of keywords. However, this 1D mapping

inevitably favors the textual dimension during query processing,

as the keyword precedes the 1D value in the string representation.

Differently, in our work which is performed in the context of the

SPADES project [19], we propose a mapping that transforms spatio-

textual data to a 2D space, where the dimensions of space and text

are of equal importance.

The most prominent approaches for effective indexing of spatio-

textual data rely on a specialized access method for joint manage-

ment of spatial and textual dimensions, so as to facilitate efficient

query processing. In general, the approaches are classified as spatial-

first, text-first or interleaved, based on the primary dimension (space

or text) selected to organize the data [17]. Early approaches [5, 7]

have studied the benefits of spatial-first vs. text-first indexing.

In [10], the spatial-keyword query is defined as a combination

of range queries and boolean keyword search. A special case is

the distance-first top-k spatial keyword query [9], which returns

a ranked list of the k objects that contain all of keywords and are

closest to the query location. That is, distance-first top-k spatial

keyword query is a combination of a top-k spatial query and a

boolean keyword query. In [9] the IR2-Tree was proposed which is

a combination of R-Tree and the signature file. Two different [8, 14]

indexing approaches have been proposed that employ a hybrid

index that augments the nodes of an R-tree with inverted indexes.

The inverted index at each node refers to a pseudo-document that

represents all the objects under the node. Another hybrid indexing

structure that combines the R*-tree and bitmap indexing to process

the spatial-keyword query was proposed in [22].
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The Spatial Inverted Index (S2I) was proposed in [18] for process-

ing top-k spatial keyword queries more efficiently. The S2I index

maps each keyword to a different aggregate R-tree that stores the

objects with the given term. The aggregate R-tree stores the latitude

and longitude of the objects, and maintains an aggregated value

that represents the maximum term impact of the objects under the

node. In fact, the aggregated R-tree is employed only when the

number of objects exceeds a given threshold. Otherwise, the objects

are stored in a file, one block per term.

Interleaved indexing approaches have also been studied in [16,

20]. The AP-tree [20] combines a Quadtree with a trie built on

keywords into a single data structure. Since both Quadtrees and

tries are hierarchical structures, the AP-tree is also a hierarchical

structure with the distinguishing feature that a node can be either

spatial or text node. FAST [16] is an approach that integrates the

spatial pyramid [2] with a new text index, called Adaptive Keyword

Index (AKI). AKI is a hybrid data structure for text, which includes

features from inverted lists and keyword tries. In its basic form,

AKI keeps inverted lists for each keyword present in the collection.

However, it has been observed that when the length of posting lists

increases too much, the performance of query processing deteri-

orates. Motivated by this fact, AKI identifies such long postings

and changes their structure to resemble a trie, thus using more

keywords to distinguish the objects.

Even though the afore-described methods for efficient querying

spatio-textual data are effective, they typically rely on a specialized

indexing structure, which has high memory requirements. Instead,

our approach does not require a specialized index for spatio-textual

queries, and also enables effective partitioning of the data that

preserves data locality. Finally, with respect to spatio-textual query

types, the query targeted in our work is an approximate keyword

range query (similar to [1]), where the keyword constraint is not

boolean. Instead, we retrieve the objects that are more similar to

the query keywords, based on Jaccard similarity, and belong to a

spatial query range.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a novel approach of transforming spatio-

textual data to a two-dimensional (2D) data space. The first axis

represent the spatial information and we employ the iDistance con-

cept for computing the value of this dimension for each data object.

The second axis represents the textual information. First, a graph is

created that captures the co-occurrence of the keywords and then

a graph partitioning algorithm is employed for creating disjointed

textual partitions. We provide a novel mapping of the data objects

to an one-dimensional (1d) value based on the textual partitioning

and provide a novel bounding schema to avoid accessing all objects

during query processing. Finally, in our experiments, we demon-

strate the efficiency of our proposed approach. Regarding future

work, we intend to study generalizations of the proposed approach,

for different spatial-keyword query types as well as for other text

similarity functions.
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