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ABSTRACT  

We present a big data framework for the prediction of streaming 
trajectory data, enriched from other data sources and exploiting 
mined patterns of trajectories, allowing accurate long-term 
predictions with low latency. To meet this goal, we follow a multi-
step methodology. First, we efficiently compress surveillance data 
in an online fashion, by constructing trajectory synopses that are 
spatio-temporally linked with streaming and archival data from a 
variety of diverse and heterogeneous data sources. The enriched 
stream of trajectory synopses is stored in a  

distributed RDF store, supporting data exploration via SPARQL 
queries. The enriched stream of synopses along with the raw data is 
consumed by trajectory prediction algorithms that exploit mined 
patterns from the RDF store, namely medoids of (sub-) trajectory 
clusters, which prolong the horizon of useful predictions. The 
framework is extended with offline and online interactive visual 
analytics tool to facilitate real world analysis in the maritime and 
the aviation domains.  
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1 Introduction  

As the maritime and aviation domains have major impact to the 
global economy, we need to advance the capacities of systems to 

improve safety and effectiveness of critical operations involving big 
fleets of moving entities in large geographical areas [10]. Towards 
this goal, the correlated exploitation of heterogeneous data sources 
offering vast quantities of archival and high-rate streaming data is 
important for increasing the accuracy of computations when 
predicting future states of moving entities. However, operational 
systems in these domains for predicting trajectories are still limited 
to a short-term horizon to date, while facing increased uncertainty 
and lack of accuracy in mobility data.  

Motivated by these challenges, we present ARGO1, a big data 
framework for the prediction of streaming trajectory data, enriched 
with data from other sources and exploiting mined patterns of 
trajectories. ARGO offers online predictions such as ‘the estimated 
flights of all aircrafts around the globe over the next 10 minutes’ or 
‘the predicted routes of vessels in the next hour’ based on their 
current movement and historical motion patterns in the area.  ARGO 
incorporates several innovative modules, operating in streaming 
mode over surveillance data, to deliver accurate long-term 
predictions with low latency requirements. Incoming streams of 
moving objects’ positions are cleansed, compressed, integrated and 
linked with archival and contextual data by means of link discovery 
methods. All data is transformed to RDF, and eventually stored for 
offline processing and analysis in a custom-built, distributed RDF 
store, specialized to process spatio-temporal RDF data. While this 
online process feeds the trajectory prediction module with enriched 
trajectory synopses, the RDF store supports batch processing over 
vast-sized integrated data, and feeds modules performing trajectory 
clustering and visual analytics, which are used to discover mobility 
patterns, exploited for online trajectory predictions.   

This paper describes the design and implementation of ARGO 
on top of state-of-the-art big data technologies (Spark, Flink, and 
Kafka), as well as comprehensive demonstration scenarios that 
clearly show its value on real-life data sets from the maritime and 
aviation domains. To our knowledge, in contrast to related state-of-
the-art systems [11][7] and research approaches [4][8], ARGO is 
unique as a big data framework capable to provide long-term 
trajectory predictions in an online fashion.  
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1 In Greek mythology, ARGO was the ship on which Jason and the Argonauts sailed to Colchis to retrieve the Golden Fleece. According to the legend, ARGO was at least as fast 

as a dove, thus metaphorically it was a ‘flying’ ship.  

2 Major Modules and System Architecture  

In this section, we present the details of the major modules of 
ARGO. Then, we provide the overall architecture of our system.  
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2.1 Synopses Generator  

The Synopses Generator (SG) [2][3] provides online, summarized 
representations of trajectories. Usually, large amounts of raw 
positional updates of moving objects can hardly contribute 
additional knowledge about their actual motion patterns, e.g., most 
vessels normally follow almost straight, predictable routes at open 
sea, unless “emergency” circumstances prevail, such as adverse 
weather conditions, accidents, etc. Thus, instead of resorting to a 
costly trajectory simplification method, which retains every 
incoming position for each object, and since our ultimate goal is 
trajectory prediction, SG drops any easily predictable positions 
along trajectory segments of “normal” motion characteristics and 
reconstructs the traces of the moving objects approximately from 
the judiciously chosen critical points without harming the quality 
of the resulting approximation. More specifically, SG detects 
trajectory features from streaming positions, identifies significant 
changes in movement online, and outputs lightweight synopses of 
coherent trajectory segments. Critical points can be of various 
types, including start and end of gap/stop/slow motion/change in 
heading. Note that the critical points are emitted at operational 
latency, so as not to cause delays in subsequent processing. Hence, 
this derived stream of trajectory synopses keeps in pace with the 
incoming raw streaming data so as to get incrementally annotated 
with semantically important mobility events. Ιn contrast to existing 
techniques, SG produces trajectory synopses in real-time, that are 
both space-efficient and highly accurate, with extremely low 
latency (within milliseconds since the arrival of raw messages 
[2][3]).  

2.2 Semantic Integrator  

The compressed stream of trajectory positions is received by the 
Semantic Integrator (SI), which performs two tasks: (a) data 
transformation to RDF, and (b) spatio-temporal link discovery (LD) 
against other data sources.  The output of the SI is a stream of 
integrated data, representing enriched trajectory synopses [5].  

Data transformation to RDF is performed using RDF-Gen, an 
efficient method that operates in a record-by-record fashion and 
outperforms state-of-the-art tools [12]. RDF-Gen exploits the 
concept of graph templates, which are populated at runtime using 
data values from a specific data source, in compliance with a given 
ontology. It supports various data sources (CSV, XML, ShapeFile, 
SPARQL endpoint, etc.), user-defined functions for data values 
transformation and operates in an online fashion. Its parallel version 
has been implemented in Apache Flink.  

After the stream of positions has been transformed to RDF, 
the link discovery module is responsible for interlinking with other 
archival sources. The most challenging link discovery tasks are of 
spatio-temporal nature; discovering topological (e.g., within) and 
proximity relations (e.g., nearby) between a moving entity and 
various 2D and 3D spatial data sets (ports, fishing and marine 
protected areas, waypoints, airblocks, sectors, etc.). Also, relations 
between more complex types are supported (i.e. polyline, polygon). 
For efficiency, blocking techniques are adopted, practically 
organizing the target data set in a grid structure, thus assigning any 
incoming entity of the source data set to a single cell (topological 
relations) or few cells (proximity relations), thus drastically 
reducing the number of necessary comparisons. Compared to 
existing LD frameworks, the following innovative features are 
provided: (a) support for proximity relations, instead of only 
topological, (b) operating over streaming inputs, (c) more efficient 
filtering [13] that exploits grid cells with empty space, and (d) a 
scalable, data-parallel implementation on Apache Flink.  

2.3 Data Manager  

The Data Manager has as the fundamental module the distributed 
spatiotemporal RDF engine. It comprises two distinct layers: (a) the 
distributed storage layer, and (b) the parallel processing layer.   

RDF storage engines typically store RDF data encoded using 
unique integer identifiers, for efficient indexing and access. In our 
work, we exploit a deliberate encoding scheme that maps 
spatiotemporal positions to 1D values (keys) [9], essentially 
providing lightweight indexing. In turn, this enables spatio-
temporal filtering by checking against this key, avoiding the 
construction and maintenance overhead of distributed spatio-
temporal index structures. After encoding the data, any NoSQL 
storage solution can be exploited. In our prototype, we store data in 
HDFS using Parquet, allowing compression and efficient retrieval. 
Also, we support different RDF storage layouts; both the one-
triples-table approach, as well as property tables together with a 
leftover triples table to reduce the number of required joins at 
retrieval time. Moreover, the corresponding dictionary that 
maintains the mapping from 1D keys to string values is stored in 
Redis, as distributed, in-memory key-value pairs.  

The processing layer, implemented in Apache Spark, takes as 
input SPARQL queries along with spatio-temporal constraints. We 
have implemented the main components of a query processing 
engine [1]: logical and physical operators, logical planner, physical 
planner, as well as main optimization techniques, such as join 
selection (repartition join vs. broadcast join) by output size 
estimation using histograms. This way, our engine supports 
different execution plans, and can be further extended towards cost-
based optimization. Furthermore, we support predicate pushdown 
by exploiting the interplay between Spark and Parquet, thus 
avoiding reading all triples from disk to memory.  Compared to 
existing distributed RDF engines that need a post-processing step to 
exclude triples that do not satisfy the spatio-temporal constraints, 
thus producing many candidate results in vain, we filter data 
“jointly”, thus pruning more candidate triples at early an processing 
stage of an execution plan triples at an early processing stage of the 
execution.  

2.4 (Sub-)Trajectory Clustering Module  

Τhe objective of the (Sub-)Trajectory Clustering (STC) module is 
to first partition trajectories into sub-trajectories and then identify 
the most representative ones that will act as cluster “pivots”. In turn, 
by using these representatives, it forms clusters around them, while 
at the same time identifies those (sub-)trajectories (called outliers) 
that fit into no group. The S2T-Clustering [4] solution to this 
problem first applies a neighborhood-aware trajectory segmentation 
method, where each trajectory is split into subtrajectories whenever 
the presence of other objects in its neighbourhood changes 
significantly; then  a specialized sampling method is employed that 
selects the most representative (sub)trajectories to serve as the seeds 
of the clusters; and finally a greedy clustering algorithm is used that 
decides which of representatives can serve as the pivots of the 
clusters w.r.t. an optimization criterion. However, the work 
presented in [4] is centralized and does not scale for voluminous 
data sets. For this reason, we adapted and re-implemented S2T-
Clustering by using the MapReduce programming framework. The 
role of this module to the overall architecture of ARGO is to take as 
input data selected from the RDF store, apply STC, and provide the 
resulting representatives (i.e. cluster medoids) both to the prediction 
module as well as back to the RDF store. Figure 1 illustrates the 
visual exploration of cluster representatives using the visual 
analytics tool (V-Analytics) that is coupled with ARGO.  
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Figure 1: Visual exploration of clustering results in VAnalytics 

(offline) tool: 2D and 3D shapes of cluster medoids.  

2.5 Future Location Prediction Module  

The Future Location Prediction (FLP) module aims to make an 
accurate estimation of the next movement of a moving object within 
a specific look-ahead time frame, as shown in Figure 2. FLP is 
usually addressed at short-term horizon, since the prediction errors 
are cumulative and expand exponentially as the look-ahead span 
increases. However, given properly trained models from historic 
data in conjunction to clusters of trajectories discovered, ARGO can 
support long-term prediction, as well, identifying cases that exceed 
regular mobility patterns.  The FLP module addresses two main 
orthogonal aspects for big data applications: online/offline 
operation; and short-/long-term prediction. The first refers to the 
time frame available for producing the prediction, while the second 
refers to the time frame of the prediction itself, i.e., the look-ahead 
time. The online long-term prediction, named FLP-L, which 
exploits on discovered routes from historic data using the STC 
module is the most challenging, compared to the online short-term 
prediction or FLPS, which improves the RMF algorithm [6].  

The original RMF formulation is very promising for shortterm 
FLP, but it comes with several stability issues (due to the application 
of SVD to noisy and/or ill-conditioned input data, which is common 
in real world). In this work we developed an improved, online 
variation of RMF, coined RMF*, in order to address these 
instabilities, as well as real world requirements for the maritime and 
aviation domains in the context of big data. Our approach differs 
from the standard RMF framework in key aspects regarding 
sampling rate, type of processing (atomic vs. distributed), nature of 
processing (batch vs. online) and nature of data.  We further 
extended RMF* with motion pattern discovery capabilities, 
hereafter called P-RMF*, selecting among candidate domain-
specific motion functions the most promising in terms of prediction 
error to pre-calculate a solution for the motion state vector, avoiding 
SVD instability issues.  

FLP-L exploits the cluster representatives mined from 
historical data as a reference for producing FLP forecasts “aligned” 
with the “closest-matched” route in the maximumlikelihood sense. 
This is a very different approach for tackling the FLP problem, as it 
makes the associated predictive models less adaptive but more 
reliable, by introducing specific “memory”, based on historic data 
of either a large fleet of objects or a single object with long duration. 
In practice, this means exploiting the patterns and trends of objects 
in the same routes, conditions and constraints (e.g., regular maritime 
traffic). These routes are efficiently exploited to enhance the 
accuracy and size of the lookahead window. In should be noted that 
having a pre-computed set of routes available for retrieval and top-
k lookup, although more computationally- and resource-intensive 
than the FLP-S approach described earlier, it is still fast enough to 
implement it in an online fashion. In practice, several such routes 

are pre-computed offline by first selecting the area of interest for 
several thousands of objects, making FLP-L feasible to provide 
long-term predictions for large fleets in an online fashion.  

  
Figure 2: Interactive visual exploration of raw (red) vs. 

predicted (grey) location data in IVA (online) tool, along 

generated synopses (icons).  

2.6 System Architecture  

The ARGO framework for trajectory prediction is implemented as 
a big data architecture and illustrated in Figure 3. It comprises two 
parts/layers: (a) stream processing layer, and (b) batch processing 
layer, which interact in order to provide the desired functionality.   

 
Figure 3: Architecture of the ARGO framework.  

In brief, the stream processing layer processes the stream of 
surveillance data, and performs data cleaning, noise elimination, 
compression and semantic data integration, in an online manner. 
The synopsized and enriched data stream, represented in RDF, can 
be consumed as it is, thus enabling the deployment of data analysis 
pipelines, and it is also stored in a distributed spatiotemporal RDF 
store. This store supports scalable and efficient batch processing of 
SPARQL queries, providing filtered, integrated, spatiotemporal 
data for higher level analysis tasks. Offline analysis of integrated 
data (e.g., for trajectory clustering) generates mined patterns, which 
are exploited in conjunction to the enriched data stream during the 
online operation of the trajectory prediction module.  

Stream processing layer: The stream-based interconnection 
is based on Apache Kafka to ensure scalability and faulttolerance. 
The individual modules have been developed in Apache Flink, thus 
allowing parallelization in a computer cluster. While the synopses 
generation and data transformation to RDF are easily parallelized 
by partitioning by moving object identifier, the parallelization of the 
link discovery module is more challenging. Two different 
techniques have been implemented: (a) blocking of archival data by 
space partitioning, and (b) building an index over archival data and 
broadcast this index to nodes.   
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Batch processing layer: The massive generation of integrated 
data in RDF poses requirements for scalable SPARQL querying. 
Existing parallel/distributed RDF stores cannot natively support 
spatiotemporal data. Motivated by this shortcoming, we developed 
a distributed spatiotemporal RDF engine in Apache Spark, which 
includes salient features, including 1D spatiotemporal encoding [9], 
logical/physical planning and optimization, thus supporting 
efficient processing of spatiotemporal SPARQL queries. This 
engine feeds the STC module with integrated data, filtered in space 
and time. The STC discovers movement patterns in the form of 
medoids of (sub-) trajectory clusters. Finally, the FLP exploits the 
mined patterns to predict the future positions of a moving object.  

3 Demo Specifications  
ARGO will be demonstrated using two real-world data sets. The 
first data set (maritime domain) covers a time span of six months, 
from October 2015 to March 2016 and provides positions of vessels 
sailing in the Celtic sea, and is publicly available2. The second data 
set (aviation domain) consists of radar tracks of the Spanish airspace 
for one week in April 2016. Our demonstration consists of three 
complementary parts: (1) preparation of surveillance data (cleaning, 
compression, integration) to be stored in the distributed RDF store, 
(2) interactive pattern discovery, which is based on the interplay 
between the visual analytics and trajectory clustering components 
on the one hand, and the distributed RDF store that provides query 
results for interactively selected spatio-temporal slices of integrated 
data, and (3)  online trajectory prediction, exploiting the mined 
patterns.  

Demonstration I: Preparatory phase. Initially, the user has 
the opportunity to comprehend the internals of our implementation 
and API, which bases on state-of-the-art big data frameworks, such 
as Apache Flink and Kafka. In detail, the user selects a data set and 
initiates the chain of stream processing components, which 
generates trajectory synopses, transforms data to RDF, and 
performs interlinking with archival data describing areas of interest 
(e.g., Natura protected areas and fishing areas for maritime, and 3D 
sectors and airblocks for aviation).  

Demonstration II: Interactive pattern discovery. Having 
gained the necessary background knowledge, the user experiences 
an interactive session, where the visual analytics component selects 
slices of integrated data by querying the RDF store, filters and 
aggregates it, and repeats this operation until a suitable data set for 
training is found. Then, the trajectory clustering component 
processes this data set and outputs the discovered patterns in the 
form of representative trajectories.  

Demonstration III: Online trajectory prediction. In turn, 
we present how the prediction module exploits the mined patterns 
to output predictions for the future location of incoming moving 
object positions from the stream of integrated data. Predictions get 
updated as new positional data arrive in the system.  

For deeper comprehension of the demonstration scenarios, 
related videos are available at ARGO’s demo web page3.  
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