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ABSTRACT
In this paper, we propose NoDA, an abstraction layer consisting
of spatio-temporal data access operators, which is used to access
NoSQL storage engines in a unified way. NoDA alleviates the bur-
den from big data developers of learning the query language of each
NoSQL store, and offers a unified view of the underlying NoSQL
store. Our approach is inspired by the equivalent paradigm of dri-
vers (such as JDBC) in the relational database world, where the
application code is indifferent to the exact underlying database
engine. Still, the challenges in the NoSQL world are manifold, be-
cause of the lack of standardization in data access. We focus on
the specific case of mobility data, and show how spatial and spatio-
temporal operators, such as range queries and k-nearest neighbor,
are supported in a unified way. Moreover, we present challenges
and solutions for supporting spatial and spatio-temporal data in
NoSQL stores.
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1 INTRODUCTION
In the current era, position tracking devices can be found on most
moving objects (vessels, vehicles, aircraft, etc.) around the globe.
Data management systems handling the tracing information pro-
duced by such devices, face a great challenge, since the volume and
velocity of mobility data are ever-increasing. The combination of
these challenges has led to the need for a different breed of data
management systems, supporting different data models as well as
scalable distributed storage and querying. These systems, known
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as NoSQL stores [1], provide increased scalability and availability
characteristics.

NoSQL stores have appeared and are being successfully deployed
in several applications for almost a decade, thus their maturity has
increased over the last years. Many NoSQL stores can now inher-
ently handle geospatial data, by providing dedicated indexes and
query types. However, NoSQL stores still rely on heterogeneous
languages and there exists no user-friendly, unified query language
to date, which can work seamlessly on all NoSQL stores. This short-
coming, also highlighted in [3], may incommode the transition to
a NoSQL store, since the application developers need to learn its
specific query language. Listings 1.1 and 1.2 show how a simple
selection operation (“find all records having values of a field ≥ 5”) is
performed in Java over MongoDB and HBase, respectively. Clearly,
the query language is far from standardized, which puts a burden
on developers that must become acquainted with different code
syntax.

Listing 1.1: Typical code for a MongoDB filter query.

1 MongoClient mongoClient = new MongoClient();
2 MongoCollection m = mongoClient
3 .getDatabase("test").getCollection("collection");
4 FindIterable t = m.find(gte("field", 5));
5 mongoClient.close();

Listing 1.2: Typical code for an HBase filter query.

1 Configuration c = HBaseConfiguration.create();
2 Connection connection = ConnectionFactory.createConnection(c);
3 Table table = connection.getTable(TableName.valueOf("test"));
4 Scan scan = new Scan();
5 RowFilter gte = new RowFilter(GREATER_OR_EQUAL,
6 new BinaryComparator(Bytes.toBytes(5)));
7 scan.setFilter(gte);
8 ResultScanner scanner = table.getScanner(scan);
9 table.close();

Motivated by the evident lack of a unified query language, in
this paper, we propose NoDA, an abstraction layer in the form of an
API for querying NoSQL stores with native support for geospatial
operations. NoDA enables application developers to query different
NoSQL stores using a single code base, in spite of the peculiarities
of each NoSQL system’s query language. Effectively, this allows
the seamless transition of application code from one NoSQL store
to another, without the need of substantial changes. NoDA is im-
plemented in Java, thus can be used by any JVM-enabled language
(e.g., Scala). It executes the query on the specified NoSQL store
and can return the results as a Spark DataFrame. Essentially, this
feature makes NoDA compatible with big data processing frame-
works (such as Apache Spark), and allows “pushing-down” opera-
tors (such as filters, projections, aggregates) to the storage engine
for increased efficiency. Standard spatio-temporal operations are
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Figure 1: The NoDA abstraction layer.

currently supported in NoDA – including box range queries, circle
range queries and kNN queries – as well as more general operators,
such as aggregations and sorting.

In brief, the contributions of this work include:
• We propose NoDA, an abstraction that allows unified access
to NoSQL stores, thus breaking the barrier to entry that
developers typically face when querying big data.

• We demonstrate the applicability of NoDA in the context of
spatio-temporal data, which is not naturally supported by all
NoSQL stores, thus providing generic geospatial operations
(range queries, kNN, and aggregations).

• We instantiate NoDA over two different NoSQL stores, a
document-oriented store that supports geospatial operations
(MongoDB), and a wide-column store (HBase) that is oblivi-
ous to spatial data, thereby showing the wide potential of
our approach.

The remainder of this paper is structured as follows: Section 2
introduces the NoDA abstraction layer, including its instantiation
over MongoDB and HBase. Section 3 reviews related work and
Section 4 concludes our study and provides hints for future research
directions.

2 THE NODA ABSTRACTION LAYER
In this Section, we provide a description of the NoDA abstrac-
tion (Section 2.1), followed by the details on how NoDA has been
implemented over two popular NoSQL stores, namely a document-
oriented NoSQL store (MongoDB, Section 2.2) and a wide-column
store (HBase, Section 2.3).

2.1 NoDA Description
Figure 1 depicts the NoDA abstraction layer on top of NoSQL stores.
NoDA resides between application code and data storage as a bridge
for data access, and aims at “hiding” the query language of the un-
derlying store from the developer. Essentially, a big data developer
expresses her code using the NoDA abstraction, and this hides the
peculiarities and complexity of accessing the specific NoSQL store.
In this way, the exact same code can be used to query data stored
in different NoSQL stores, no matter how different their query
languages are.

The objective of NoDA is to offer a developer-friendly abstrac-
tion, which can be exploited to provide simple and unified access

Figure 2: Operators supported in NoDA.

to scalable NoSQL stores. Simple in terms of using a familiar vo-
cabulary of generic operations (filter, project, sort, etc.), without
mixing the data model and the query language of the individual
NoSQL store in the application code. Unified because the exact same
operations are used for querying different NoSQL stores.

2.1.1 Functionality. Figure 2 provides an illustrative overview of
the operators offered by NoDA. Primitive operators include filter,
project, sort, groupby and are depicted in black boxes. Grey boxes
indicate a set of operators provided for defining the functional
behaviour of primitive operations. For example, different types of
filtering are supported: based on equality, on comparison, or on
satisfying a geographical predicate.

Listing 2.1: Set up a connection to a NoSQL database by combining
it with a Spark Session.

1 NoSqlDbSystem.initialize();
2
3 SparkSession session = SparkSession.builder().master("local")
4 .appName("MongoSparkConnectorIntro").getOrCreate();
5
6 //YYY method is the name of the NoSQL database in which we
7 //connect. It can be MongoDB or HBase.
8 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.YYY()
9 .host("192.168.1.1").database("test").username("user")
10 .password("pass").port(28017).sparkSession(session).build();
11
12 NoSqlDbOperators noSqlDbOp = noSqlDbSystem
13 .operateOn("table_name");
14
15 //doing data query operations by utilizing noSqlDbOp
16
17 noSqlDbSystem.closeConnection();
18 session.close();

Listing 2.1 shows the interface of NoDA used for setting up
a connection to a NoSQL database. In lines 8-10 the connection
is established by passing the necessary parameters (IP, port, au-
thentication details, database name), and it is associated with a
Spark session (line 3). This is not mandatory, but it is useful for
certain complex data processing tasks (e.g., joins) that cannot be
“pushed-down” to theNoSQL store, thusNoDA can populate Spark’s
DataFrames with data. Then, a NoSqlDbSystem object is initialized
on a specific table (or its equivalent in NoSQL terms), which can be
used for querying the NoSQL store. It should be emphasized that
the code is oblivious to the exact NoSQL store used, apart from
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the YYY method (line 8). For example, to connect to a MongoDB
instance, we would simply set YYY=MongoDB.

Listing 2.2: Definition and Execution Phase of Primitives.

1 Dataset<Row> dataset = noSqlDbOp
2 .filter( ... ).filter( ... ) //definition phase
3 .groupBy( ... ).sort( ... ) //definition phase
4 .project( ... ) //definition phase
5 .toDataframe(); //execution phase

Listing 2.2 depicts the template code needed for expressing a
query in NoDA. A query can be expressed by applying a sequence of
primitive operators on a NoSqlDbSystem object. The same syntax is
used to express simple and complex queries. For example, a simple
query such as projecting a field can be expressed using a single
primitive operator (project), whereas a complex operation can be
expressed by combing multiple operations (e.g., two filter operators
followed by a sort operator).

At amore technical level, query primitives in NoDA are separated
in two phases: definition and execution phase. The query primitives
correspond to stages in a multi-stage pipeline. Multiple stages can
be declared in the pipeline, which are then executed sequentially,
when an operator is found that corresponds to the execution phase.
As shown in the example of Listing 2.2, most primitive operators
belong to the definition phase, whereas the toDataFrame operator
belongs to the execution phase.

2.1.2 Spatial and Spatio-temporal Operators. An important feature
of NoDA is that it was designed to support spatial and spatio-
temporal operations. Note that these query types are not supported
by all NoSQL stores, thus making it more challenging to provide
this functionality in the first place.

Towards this goal, in addition to common operators such as
boolean and comparison ones, NoDA supports operators oriented
to spatial (2D) and spatio-temporal (3D) data, called Geographical
Operators (or Geo-Operators in short). The offered Geographical
Operators are: inGeoPolygon, inGeoBox, inGeoCircleKm, inGeoCir-
cleMeters, inGeoMiles, nearestNeighbors and inGeoTemporalBox.

Listing 2.3: Spatial rectangle query and spatial circle query

1 // Spatial rectangle query
2 Coordinates c1 = Coordinates.newCoordinates(23.6266, 37.9262);
3 Coordinates c2 = Coordinates.newCoordinates(23.6682, 37.9477);
4 int count = noSqlDbOp.filter(inGeoBox("location", c1, c2))
5 .count();
6
7 // Spatial circle query whose radius is 2Km.
8 Coordinates c = Coordinates.newCoordinates(23.7613, 37.9864);
9 int count = noSqlDbOp.filter(inGeoCircleKm("location", c, 2))
10 .count();

Listing 2.3 shows examples of a box range query and a circular
range query expressed in NoDA. Passing a geographical operator
type to the filter primitive is equivalent to a filtering operation
on a specific type of spatial data. In this way, the developer can
retrieve data using spatial constraints by passing Geo-Operators as
arguments to primitive operations. Nearest neighbor queries are
very important for spatial data, therefore they are supported by
NoDA as shown in Listing 2.4. Finally, NoDA supports also spatio-
temporal data, as shown in Listing 2.5, where a spatio-temporal
range query is expressed.

Listing 2.4: Spatial k-NN query.

1 Coordinates c = Coordinates.newCoordinates(23.7613, 37.9864);
2 int count = noSqlDbOp
3 .filter(nearestNeighbors("location", c, 2))
4 .toDataframe();

Listing 2.5: Spatio-Temporal Box query.

1 SimpleDateFormat s =
2 new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS");
3 Date d1 = s.parse("2017-12-01T00:00:00.000Z");
4 Date d2 = s.parse("2017-12-02T23:59:59.999Z");
5 Coordinates c1 = Coordinates.newCoordinates(23.6266, 37.9262);
6 Coordinates c2 = Coordinates.newCoordinates(23.6682, 37.9477);
7 int count = noSqlDbOp.filter(
8 inGeoTemporalBox("location", d1, d2, c1, c2))
9 .count();

All these examples demonstrate the simplicity of NoDA, which
abstracts away the individual query language of the underlying
NoSQL store. In fact, all above examples are used to query any
NoSQL store, without any changes, since the only place where we
declare the specific NoSQL store used is in the initialization of the
NoSqlDbSystem object.

2.2 NoDA over MongoDB
MongoDB is a popular document-oriented NoSQL store, where
data is modeled as documents. In order to implement NoDA over
MongoDB, we represent each spatial or spatio-temporal position as
a document. Obviously, if the record contains additional attributes
(e.g., speed, acceleration, etc.), these are also represented as fields of
the same document. Also, MongoDB provides a spatial extension,
which is based on GeoJSON representation, and spatial indexing
as well as spatial operators are supported. This makes the internal
implementation of NoDA over MongoDB easier.

MongoDB provides spatial operators, such as $geoNear, $ge-
oWithin, $geometry, $centerSphere. In the implementation of the
Geo-Operators of NoDA over MongoDB, we translate the query
parametes (e.g., point coordinates or query radius) to these spatial
operators. For example, the operators inGeoBox and inGeoPolygon
use the $geoWithinwith the $geometry query operator of MongoDB,
selecting documents with geospatial data enclosed in the specified
geometry. The inGeoCircle operator uses the $geoWithin with the
$centerSphere query operator of MongoDB, selecting documents
within the bounds of the circle. The nearestNeighbors operator
exploits the $geoNear operator of MongoDB.

The efficiency of the above operators is supported by built-in
spatial indexes of MongoDB (2d and 2dSphere). Also, Compound
indexes can be used to index spatial and temporal data jointly. In this
case, NoDA can exploit the spatial indexing provided by MongoDB
for efficient access. However, we found that some spatial operations
are not supported as efficiently as possible. We currently investigate
on methods to improve the performance of such operations, e.g.,
nearest neighbor queries.

2.3 NoDA over HBase
Supporting the NoDA abstraction over another NoSQL store raises
other challenges. For example, HBase is a wide-column store that
follows the idea of BigTable [2], which does not support spatial data
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natively. This is also the case for several other NoSQL stores that
rely on key-value pairs, and mainly support key-based operations,
including range scans.

The solution to the problem is mapping the spatial (or spatio-
temporal) data to 1D values, which can then be used as keys in
HBase. Locality-preserving 1D mappings have been extensively
used in spatial databases (e.g., using space-filling curves), but also
in NoSQL context (e.g., MD-HBase [6], QUILTS [7], etc.). NoDA
follows the same principle in order to become applicable over key-
based NoSQL stores.

In more detail, given a spatio-temporal record {x ,y, t}, we derive
a 1D mapping using Z-order, which is then used as key for inserting
the record in HBase. Then, spatio-temporal queries such as range
or kNN can be equivalently expressed as range searches over the
1D values (e.g., [9]). The NoDA instantiation for HBase implements
this functionality, thus hiding this complexity from the developer,
while still exposing the same interface, as described above.

3 RELATEDWORK
NoDA is related to the storage layer of platforms that provide a
holistic solution for big spatial data management and analytics
through application interfaces.

Many of these platforms operate on a particular type of data, like
UlTraMan [4], which is oriented towards trajectory data. UlTraMan
supports querying by trajectory ID, range queries, kNN queries, and
co-movement pattern mining. Furthermore, UlTraMan requires the
data to be moved in its storage layer; during this operation, a pre-
processing step occurs, which transforms the data and partitions
them into the available nodes of the cluster. NoDA does not require
the data to be moved; it queries the data on their original NoSQL
store. Similarly, DITA [8] is a distributed in-memory trajectory ana-
lytics system on Spark, providing an interface for trajectory analysis.
However, DITA mainly targets efficient in-memory processing and
analysis of spatial data. DITA could benefit from coupling with
NoDA as underlying layer for accessing NoSQL storage.

Pyro [5] is another system for querying spatio-temporal data.
Pyro builds an index on top of HBase, which is used to generate
the set of range scans needed for a spatial query. Then, it evaluates
the query by executing a multi-scan phase, which processes all pro-
duced range scans together. Pyro is designed to utilize the benefits
of HBase, and cannot be trivially ported to other NoSQL stores.

GeoMesa 1 is a suite of tools, with similar objectives to NoDA
abstraction layer. It supports spatial queries on column-based and
key-value based NoSQL stores, by using the Common Query Lan-
guage (CQL). GeoMesa builds indexes, by exploiting 1D mappings
using Z-order, on top of the processing layer, to enable fast retrieve
of the query result set. This resembles our approach for instantiat-
ing NoDA over HBase. However, a critical difference is that NoDA
exposes specific data operators to the developer, thus aiming at
easy integration with application code.

NoSQL systems supporting multiple data models, while per-
sisting the same query language, are also related to NoDA. Such
systems, also called polyglot, are surveyed in [3]. ArangoDB2 in-
tegrates document, key-value and graph data models in a single

1https://www.geomesa.org/
2https://www.arangodb.com/

system. It uses AQL as its query language which also supports
geospatial functions for querying spatial data. OrientDB3 com-
bines document, key-value, reactive and object-oriented models
in a single system. OrientDB’s query language is based on SQL
and supports geospatial queries, along with some extensions for
manipulating trees and graphs. In contrast to these systems, NoDA
is designed to be used on top of any existing NoSQL store.

4 CONCLUSIONS
In this paper, we introduce NoDA, an abstraction layer for NoSQL
stores that allows unified access to heretogeneous data models
and storage systems. Its primary focus is on scalable mobility data
management, in particular spatial and spatio-temporal operators.
NoDA has been implemented on top of MongoDB and HBase, thus
demonstrating the NoDA concept in practice.

Many directions for future work are opened up. First, we intend
to provide a declarative language on top of NoDA. Another direction
is to extend NoDA to support other types of NoSQL stores, such as
graph databases. Also, we intend to enrich the supported queries
for mobility data towards trajectory operators. Last, but not least,
we are going to explore techniques for more efficient support for
spatio-temporal operators, since our preliminary experiences show
that NoSQL are not optimized for mobility data.
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