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ABSTRACT
Columnar data formats, such as Apache Parquet, are increasingly
popular nowadays for scalable data storage and querying data lakes,
due to compressed storage and efficient data access via data skip-
ping. However, when applied to spatial or spatio-temporal data,
advanced solutions are required to go beyond pruning over single
attributes and towards multidimensional pruning. Even though
there exist solutions for geospatial data, such as GeoParquet and
SpatialParquet, they fall short when applied to trajectory data (se-
quences of spatio-temporal positions). In this paper, we propose
TrajParquet, a format for columnar storage of trajectory data, which
is highly efficient and scalable. Also, we present a query processing
algorithm that supports spatio-temporal range queries over Traj-
Parquet. We evaluate TrajParquet using real-world data sets and
in comparison with extensions of GeoParquet and SpatialParquet,
suitable for handling spatio-temporal data.
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1 INTRODUCTION
In the era of big data, cloud-based storage and querying data in
raw [1] or in minimally-processed formats in data lakes is becom-
ing increasingly popular [10], as it alleviates the need for time-
consuming ETL (Extract-Transform-Load) operations and it reduces
the data-to-query time. This is particularly evident in domains that
handle big and complex data, such as scientific, social, and mobility
data. In the context of data lakes [4], specific data formats have been
proposed to fit with this new infrastructure for data management.
In particular, column-oriented data formats, such as Parquet [9],
inspired by Google’s Dremel [2], are widely used, due to salient
features that include compressed storage and efficient data access
via data skipping [8].

Although columnar formats are efficient for tabular data, they
cannot be trivially applied to more complex data types, such as
geospatial data. Thus, researchers have proposed extensions, such
as SpatialParquet [7], while the Open Geospatial Consortium (OGC)
makes an effort to standardize GeoParquet. However, these formats
are suitable for static geospatial data, whereas many modern appli-
cations produce large volumes of dynamic, time-evolving spatial
data, such as trajectories of moving objects.

Motivated by this need, in this paper, we introduce TrajParquet,
a columnar storage format designed for scalable storage and query-
ing of trajectory data that extends Apache Parquet. In Section 2,
we describe the representation of trajectory data in this format,
followed by a practical indexing approach that allows data skipping
at query time. In Section 3, we perform a comparative evaluation
of TrajParquet against extensions of SpatialParquet and GeoPar-
quet (to handle the temporal dimension) over two real-world data
sets. The results demonstrate that our proposal offers significant
performance improvements. In Section 4, we conclude the paper
and discuss future work.

2 TRAJPARQUET
2.1 The TrajParquet Format
The TrajParquet structure format is designed for the storage of
trajectories as sequences of spatio-temporal positions capturing the
movement and location of objects or entities over time. A single
trajectory may be composed of thousands positions, which can
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message TrajectorySegment {
required BINARY entityId;
required INT64 segmentId;
required BINARY valsX;
required BINARY valsY;
required BINARY valsT;
required DOUBLE minX;
required DOUBLE maxX;
required DOUBLE minY;
required DOUBLE maxY;
required INT64 minT;
required INT64 maxT;

}

Listing 1: TrajParquet mes-
sage structure format.
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Figure 1: Trajectory segmen-
tation.

be difficult to store and query it as a single unit. For this reason,
typically, a trajectory is represented as sequences of segments that
contain a number of successive spatio-temporal positions. Two suc-
cessive spatio-temporal positions constitute a line segment. Listing 1
shows the message structure of a TrajectorySegment in the Traj-
Parquet format. The values of spatio-temporal positions (longitude,
latitude, timestamps) are stored separately in three binary fields
(valsX, valsY, and valsT), one for each dimension. Each field is
represented as a byte array that contains all the consecutive values
for a specific dimension, corresponding to the consecutive positions
of a moving entity. Moreover, we store the spatio-temporal bound-
ing box of the trajectory in six fields (minX, maxX, minY, maxY, minT,
maxT). Additionally, a TrajParquet message holds the entity’s identi-
fier in a binary field (entityId) and the identifier of the trajectory
segment in a 64-bit signed integer field segmentId.

2.2 Trajectory Segmentation and Grouping
Given an input data set of trajectories, the first step is to gener-
ate the corresponding TrajParquet files. However, depending on
the use-case scenario, trajectories may consist of a high number
of positions. For instance, a vessel trajectory may consist of thou-
sands of positions in the case of transatlantic trips or it may corre-
spond to multiple routes between two ports along with the stops
between routes [12]. To solve this challenge, the common approach
followed in the literature is to perform trajectory segmentation, es-
sentially splitting a trajectory into multiple segments and storing
these as individual objects [5]. As a result of the segmentation pro-
cess, a trajectory can be represented as a sequence of successive
TrajectorySegments. Another challenge is how to group together
TrajectorySegments in the same data page of TrajParquet. Clearly,
if this grouping of segments is performed at random, then the result
would be data pages that span large spatial areas and long time
intervals, thus offering limited opportunities for skipping pages.
Instead, it is beneficial to group together TrajectorySegments
with high spatial vicinity and with similar time span, so as to form
compact data pages possibly increasing the opportunities for data
skipping.

To address these two challenges, we propose to partition the
3D spatio-temporal domain using the Hilbert space-filling curve

(SFC) [3]. Notably, as depicted in Fig. 1, the space is partitioned
in 3D non-overlapping cubes, each covering a specific spatial area
for a certain time span. Then, the Hilbert SFC is used to assign 1D
numeric values to cubes, in a way that preserves data locality, i.e.,
neighboring cubes are expected to have close identifier values. In
this way, grouping is performed based on the 1D values assigned
by the SFC, by means of a sorting operation. Therefore, trajectory
segments that are located in neighboring cubes will be stored on
the same data page with high probability.

The actual trajectory segments are formed based on containment
in a specific cube. In Fig. 1, the trajectory of an object is depicted that
consists of positions: {𝑝1, 𝑝2, . . . , 𝑝8}, and it is split into 3 segments.
Note that when we generate the trajectory segments, we introduce
some data replication in order to preserve the connection of line
segments between successive trajectory segments. Specifically, we
add in each segment the last spatio-temporal point of the previ-
ous segment of the trajectory. For example, using this technique,
the trajectory segments in Fig. 1 are: {𝑝1, 𝑝2}, {𝑝2, 𝑝3, 𝑝4, 𝑝5}, and
{𝑝5, 𝑝6, 𝑝7, 𝑝8}. By doing so, we ensure that all of the line segments
that cross two or more cubes will be represented in the trajec-
tory’s segments as two successive points, without being missed.
This, guarantees the correctness during the processing of spatio-
temporal range queries, since all of the line segments that compose
a trajectory are represented in the end.

2.3 Query Processing
In this section, we describe the algorithm for processing spatio-
temporal range queries. A spatio-temporal range query 𝑞 is defined
as a box with lower and upper bounds 𝑞 = [(𝑥𝑙 , 𝑦𝑙 , 𝑡𝑙 ), (𝑥𝑢 , 𝑦𝑢 , 𝑡𝑢 )].
The query fetches all of the spatio-temporal line segments that in-
tersect with the box. The algorithm follows the filter-and-refinement
paradigm, where a set of candidate objects are retrieved efficiently
(filtering), followed by a process that excludes the false positives,
i.e., those candidate objects that are not query results (refinement).

Filtering Phase. The boundaries of the spatio-temporal range
are expressed for each dimension as interval constraints. This is
done for those fields that relate to the values of its Minimal Bound-
ing Box (MBB). The constraints are combined under a logical 𝑎𝑛𝑑
operator, passed as a predicate for push-down filtering. The exe-
cution of the filter fetches all messages, i.e., trajectory segments,
whose intervals in the longitude, latitude and temporal dimensions
intersect with the query. It should be noted that only a limited set of
data pages are accessed from disk. This is due to the application of
data skipping. Thus, the filtering phase is the one that is associated
with disk accesses. The subsequent processing (refinement phase)
occurs in the main memory.

Refinement Phase.Having fetched a set of trajectory segments
whose MBBs intersect with the query, an additional procedure
follows for discarding the false positive spatio-temporal lines of
segments, i.e., the ones that do not intersect with the query. Each
line (two subsequent points) for each trajectory segment is checked
for intersection with the query. Lines that do not intersect with the
query, are disregarded from the trajectory segments.

After the refinement phase, a concatenation procedure follows.
The concatenation procedure connects consecutive trajectory seg-
ments into a single trajectory object. Clearly, the applied trajectory
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segmentation may split a trajectory into more than one segment
(messages) if it crosses more than one cubes. In this manner, we
manage to have a result set of consecutive trajectories.

2.4 Extensions of Existing Spatial Formats
In this section, we explain how existing Parquet formats for geospa-
tial data could be extended to support the temporal dimension.
These extensions will serve as baselines to compare them against
our proposal TrajParquet.

GeoParquet1 is an incubating Open Geospatial Consortium
(OGC) standard for storing geospatial data in Parquet. Eachmessage
handles a geometry in a well-known binary (WKB) format in a
binary field. Along with the geometry, the coordinate values of
the lower and upper bounds of its MBB are stored in separate 64-
bit floating point fields. GeoParquet enables push-down spatial
filtering by exploiting the MBB. To handle trajectories, we extend
the Geoparquet format, referring to it as GeoParquet+Time. In this
format, each message corresponds to a trajectory segment and
stores a linestring in WKB format. We add a repeated 64-bit signed
integer field that keeps the temporal values of each location. In
addition, we add two fields to keep the temporal interval of this
segment. In this way, the existing spatial bounding rectangle is
enhanced with the temporal dimension, enabling push-down spatio-
temporal filtering. Concerning the information of the moving entity,
we add a binary field that holds the identifier of the object and a
64-bit signed integer field that holds the segment identifier.

SpatialParquet [7] is a Parquet extension that supports geospa-
tial data types. Coordinate values are stored in double fields under
nested repeated groups. In this way, several geometric types can
be represented. The geometry type is indicated by a specific value,
stored in a 32-bit signed integer field in the message. We extend
SpatialParquet to a trajectory-oriented format, referring to it as
SpatialParquet+Time. In this format, each message represents a tra-
jectory segment. Thus, we add a linestring to each message, which
represents, in the repeated nested coordinates group, the consecu-
tive locations of the moving entity. To cover the temporal values of
the spatio-temporal traces, we also add a 64-bit signed integer field
alongside the values of the coordinates. Similarly to the GeoParquet
extension, we add a binary field that holds the entity’s identifier
and a 64-bit signed integer field that holds the segment identifier.

3 EXPERIMENTS
3.1 Experimental Setup
The experimental evaluation is conducted by evaluating TrajPar-
quet, against the GeoParquet+Time and the SpatialParquet+Time,
trajectory-oriented extensions, denotedwithGP+Time and SP+Time,
respectively. To ensure a fair comparison, the three formats are
evaluated under the same trajectory segmentation and grouping
approach, presented in Section 2.2. They also utilize the query
processing algorithm portrayed in Section 2.3. However, for the
SpatialParquet+Time approach, the filtering phase is not in effect,
as it cannot exploit the push-down filtering procedure. This is a
known limitation of the current Parquet library, and it is related to
repeated fields.

1https://geoparquet.org

The assessment is based on the performance of spatio-temporal
range queries, defined by ranges in the three dimensions. A range
query retrieves all trajectory segments that intersect with the 3D
spatio-temporal box defined by the query.

Data Sets. We evaluate the efficiency of the Parquet formats
on two real-world trajectory data, Geolife and Brest. Geolife [11]
is a GPS trajectory data set which contains 26M spatio-temporal
positions from 187 users in the time span of 64 months. Brest2 is
an integrated and curated maritime data set that contains vessel
positions, weather data, contextual data, etc. [6]. We use the 19M
vessel positions of a period of 6 months to reconstruct trajectories
for 4, 349 vessels.

Query Generation. We generate 1, 000 box queries of equal
length in every dimension located at random locations of the data
space. We separate the queries in 3 classes (A, B and C) based on
the size of the query result set. Class A covers the queries with
the smallest number of retrieved results (up to the 20th percentile),
while class C covers the queries with the largest number of retrieved
results (larger than the 80th percentile). Class B contains the queries
that fall between the 40th and the 60th percentiles. For each class,
we report the average execution time.

Platform and Software. The experiments were executed on a
machine equipped with 3.6GHZ Intel core i7-4790 processor, 16GB
DDR3 1600MHz RAM, 500GB SSD disk drive and Ubuntu 22.04.2
LTS operating system. We implemented the TrajParquet format
in Java, based on the Parquet Java library. For the GP+Time and
SP+Time formats, we extended the GeoParquet and SpatialPar-
quet message structure format of the Java implementation that was
used in the SpatialParquet paper [7]. The experiments run via the
Apache Spark framework v 3.0.1, utilizing the resilient distributed
dataset (RDD) API interface. The parquet Hadoop integration pack-
age (parquet-hadoop) is used for reading and writing parquet files
from the RDD interface. The default configuration settings are used
for the Apache Parquet storage format, while for the execution
environment of Apache Spark, the parameter that is set exclusively
is the driver memory, 4GB for the pre-processing and 2GB for
querying procedure.

Pre-processing. A pre-processing procedure is applied to store
the Geolife and Brest data sets in Parquet format. We utilize the
SNAPPY compression for all of the Parquet format structures. For
all of the structures (TrajParquet, GP+Time and SP+Time), the pre-
processing procedure takes the same time for each data set, 120 sec
for Geolife and 90 sec for Brest. Even though we exploit the Hilbert
space-filling curve when partitioning the space, we use a different
representation precision for each data set. The more bits we use, the
larger the number of cubes covering the data set’s space. A different
precision is needed as there are differences in the size of the spatio-
temporal space the various data sets cover. For the Geolife data set
we use 8 bits that result in 16,777,216 partitions, while for the Brest
data set we use 5 bits for a total of 32,768 partitions.

Code availability. The code of TrajParquet and the baselines
used for the experiments is publicly available3 to favor the repro-
ducibility of the results and to allow improvements and extensions
from the scientific community.

2Publicly available at https://zenodo.org/record/1167595
3https://github.com/nkoutroumanis/TrajParquet/

https://geoparquet.org
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Figure 2: Average query execution time on the Geolife and
Brest data set.

3.2 Experimental Results
Fig. 2 shows the average execution time of the different Parquet
formats per query class for the Geolife and Brest data set. The
first observation is that TrajParquet outperforms all the competitor
approaches in all cases. GP+time is the second best, while SP+time
performs worse than the other two approaches in all the tests
because it does not perform predicate push-down for the spatio-
temporal constraint due to the use of the repeated field. This shows
that the format proposed in SpatialParquet cannot be extended to
handle sequences of spatio-temporal positions effectively.

In Fig. 2a, for the Geolife data set, the gain in performance for
the TrajParquet format compared to the best-performing competi-
tor (GP+Time) is 18.3%, 24.5% and 21.3% for classes A, B and C,
respectively. In Fig. 2b, for the Brest data set, the biggest gain in
performance is observed, 28.6%, 35.3% and 25.2% for classes A, B
and C, respectively.

Table 1: Size (in MB) of data sets for TrajParquet and the
different extensions GP+Time and SP+Time.

Data set TrajParquet GP+Time SP+Time
Geolife 424 428 424
Brest 255 263 219

Table 1 shows the sizes of the data sets (in MB) for each Parquet
format, where SNAPPY compression is applied. The SP+Time ap-
proach achieves the most efficient compression compared to the
other approaches for the Brest data set. For the Geolife data set, the
TrajParquet and the SP+Time approaches have the same memory
footprint, smaller than the GP+Time approach.

Discussion. We infer from the experimental evaluation that
neither GP+Time nor the SP+Time can handle trajectory data ef-
ficiently. The GP+Time format stores linestrings in a well-known
binary (WKB) format, requiring deserialization when the points of
the linestrings are parsed. Also, the timestamp values are stored in
a repeated field, and thus they are fetched one by one in a streaming
fashion. This slows down the execution of queries.

On the other hand, SP+Time format stores all of the elements
(x, y, t) of the linestring in repeated fields. Thus, it cannot perform
data skipping, as it handles the values that are queried in three
different repeated fields. Instead, the TrajParquet format does not
face any of these problems. The spatio-temporal points of the line

segments are stored in three separate binary fields where each one
constitutes a byte buffer. The buffer handles contiguous sequences
of the bytes of the actual values in a dimension. When a push-down
predicate filtering is applied, each byte buffer is fetched as a single
value, and then the actual (sequential) values are read.

4 CONCLUSIONS
In this paper, we propose an extension of Apache Parquet, called
TrajParquet, suitable for representing and storing trajectory data
at scale. The proposed format relies on a technique for trajectory
segmentation and a method for grouping spatio-temporal positions
to generate compact data pages that increase the opportunity for
data skipping. We present an algorithm for range queries over
trajectory data that outperforms adaptations of existing approaches
in Parquet for spatial data. Our comparative experimental study
using two real-life data sets demonstrates the advantages of our
approach.

Many directions for future work can be identified. One obvious
direction is providing efficient support for additional query types,
such as 𝑘-nearest neighbors. Then, creating more compact data
pages by exploiting sophisticated grouping methods that do not
sacrifice correctness is of interest.
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