A Survey on Big Data Processing Frameworks for
Mobility Analytics

Christos Doulkeridis!, Akrivi Vlachou?, Nikos Pelekis?, Yannis Theodoridis*
!Department of Digital Systems, University of Piraeus, Greece
2Information & Communication Systems Engineering, University of Aegean, Greece
3Department of Statistics and Insurance Science, University of Piraeus, Greece
“Department of Informatics, University of Piraeus, Greece
{*cdoulk, ®npelekis, *ytheod}@unipi.gr, 2avlachou@aegean.gr

ABSTRACT

In the current era of big spatial data, the vast amount
of produced mobility data (by sensors, GPS-equipped
devices, surveillance networks, radars, etc.) poses new
challenges related to mobility analytics. A cornerstone
facilitator for performing mobility analytics at scale is
the availability of big data processing frameworks and
techniques tailored for spatial and spatio-temporal data.
Motivated by this pressing need, in this paper, we pro-
vide a survey of big data processing frameworks for mo-
bility analytics. Particular focus is put on the underlying
techniques; indexing, partitioning, query processing are
essential for enabling efficient and scalable data man-
agement. In this way, this report serves as a useful guide
of state-of-the-art methods and modern techniques for
scalable mobility data management and analytics.

1. INTRODUCTION

Nowadays, the ever-increasing rate of mobility
data generation has resulted in vast volumes of spatio-
temporal data, thus leading to new challenges for
scalable processing and analysis of big mobility data.
Interestingly, this applies to different domains of ev-
eryday life, from urban, to marine, and even further
to air-traffic management. Miscellaneous applica-
tions and systems, such as surveillance networks,
sensor readings on moving objects, human-related
mobile data, social activity in location-based so-
cial networks, produce and gather positional data
at rapid rates and at global scale.

In tandem with this explosion of mobility data,
management of big data raises numerous research
challenges [34] in different phases of the big data
processing and analysis pipeline, including: (a) data
acquisition, (b) data pre-processing and cleaning,
(c) data integration, aggregation, and representa-
tion, (d) modeling and analysis, and (e) interpreta-
tion. The modern trend for scalable storage of mas-
sive datasets is by means of a NoSQL store [13, 16].

The exact choice depends on numerous parameters,
including the type of data, the data access pat-
terns, the purpose of data processing (read/write,
read-only, etc.), as well as any special requirements
with respect to the Consistency, Availability, and
Partition-tolerance (also known as CAP).

Also, the current landscape of big data manage-
ment comprises multiple frameworks targeting dif-
ferent aspects of big data. One major separating
line is drawn between frameworks for batch and
real-time processing, although lately some systems
have been designed to tackle both cases. In the
batch processing domain, Spark [65] is one of the
most popular solutions nowadays with a large and
growing user-base. However other solutions, such
as Flink [12], are also applicable with success. In
particular, Spark has successfully addressed many
of the limitations of Hadoop [18], and operates in
main-memory by its core abstraction: RDDs (Re-
silient Distributed Datasets) [64]. In the real-time
processing domain, the most notable systems in use
today are Storm [53] and Flink [12].

This paper provides an overview of the state-of-
the-art in big data storage and processing, focus-
ing primarily on scalable solutions for mobility data,
i.e., spatial but most importantly spatio-temporal
data. Despite the rich literature on management of
spatio-temporal and mobility data, only a limited
number of research prototypes attempt to address
this problem in the context of big data, while most
evaluations and benchmarks focus mostly on big
spatial data [3, 22, 29], rather than spatio-temporal
data [40]. The majority of developed prototypes ex-
tend Hadoop or Spark in order to be applicable for
spatial data. In this survey, we also cover big data
approaches that handle the temporal dimension.

The remaining of this survey is structured as fol-
lows: Section 2 provides background concepts re-
lated to spatio-temporal and mobility data. In Sec-
tion 3, we present typical partitioning techniques

O
(] ‘. ° ° o ® o °
Ll | IR IR
° ., ao/\ ° ° a L4
oo/ ° O
®ibo T O o bo 10 o *
° _,.’ L . ® J)\
.
o o T e . ® o
(a) Range query (b) 2-NN query (c) Distance join

Figure 1: Basic spatial query types.

used for mobility data. Then, in Section 4, we de-
scribe distributed indexing techniques for big spa-
tial and spatio-temporal data. Section 5 provides
an overview of query processing, focusing on range
and k-NN queries as well as joins. Section 6 classi-
fies existing storage systems and processing frame-
works based on the underlying techniques that were
presented in the previous sections. Finally, we con-
clude the paper in Section 7 and sketch future re-
search directions.

2. BACKGROUND

In this section, we provide some basic background
concepts related to query types for spatial, spatio-
temporal and trajectory data.

Figure 1 depicts the most basic spatial query types
for spatial point data. Obviously, these queries can
be generalized for other types of spatial objects,
such as polygons. In Figure 1(a), a range query
is depicted which is defined by a query point g and
a radius r, and retrieves all objects within distance
r from ¢ (in this example: {a,b,c}). Other ways to
express the spatial constraint also exist, e.g., as a
2D box instead of a circle, but the concept remains
the same. Figure 1(b) shows the case of a k-nearest
neighbor (k-NN) query, defined by a point ¢ and
an integer k (in this example, the 2-NN of ¢ are: a
and b). In Figure 1(c), the case of a distance join
between two data sets is depicted, where the result
is pairs of objects from the two data sets that are
within a user-specified distance.

Extending these queries for spatio-temporal data
points is straightforward by adding time as third
dimension to the query. In the case of k-nearest
neighbors, different options exist, such as retrieval
of the spatially k nearest objects that satisfy a tem-
poral constraint, or the k temporally closest objects
that satisfy a spatial constraint.

Figure 2 shows basic trajectory queries. On the
left, a spatio-temporal range query for trajectories
is depicted, which retrieves all portions of trajecto-
ries inside a spatial region during a temporal inter-
val. Then, a k-NN query is shown, which retrieves
the 2 trajectories closest to a given point. In Fig-

/

<

(a) Range query

(9

(b) 2-NN query (c) Trajectory similarity (d) Trajectory join

Figure 2: Basic trajectory queries.

ure 2(c), a trajectory similarity query is depicted
which, given a trajectory similarity function, re-
trieves the most similar trajectory to a given query
trajectory. Variants of this query can use a distance
threshold on similarity or retrieve the k most sim-
ilar trajectories. Lastly, in Figure 2(d), the case of
trajectory join is shown, where two data sets of tra-
jectories are given, and the task is to identify pairs
of trajectories that satisfy a condition (typically ex-
pressed as similarity constraint).

3. PARTITIONING TECHNIQUES

Data partitioning is the key technique for achiev-
ing efficient parallel processing of mobility data.
Partitioning techniques for big mobility data have
the following distinguishing features: (a) they op-
erate on a sample of data in order to produce par-
titions for the complete data set, (b) they need to
cope with skewed data distributions, (c¢) they should
be adaptive both with respect to changing data dis-
tributions as well as changes in the query workload,
(d) they need to balance the workload to the avail-
able nodes, which is further complicated by object
duplication to nearby partitions.

3.1 Spatial and Spatio-temporal Partition-
ing

Partitioning techniques for the 2D space include
partitioning based on Grid, STR (sort-tile-recursive),
Quadtree, k-d tree, as well as mapping to 1D values
using space-filling curves followed by 1D partition-
ing. All partitioning techniques for spatial data can
also be applied for spatio-temporal data, if we con-
sider time as another dimension. However, some
frameworks for big spatio-temporal data organize
data based on temporal partitions, which are fur-
ther partitioned in the 2D space. As an example,
ST-Hadoop [4, 6] follows this approach.

Grid partitioning. This is a standard space
partitioning technique that splits the underlying space
in non-overlapping cells. Several frameworks use
grid partitioning, including SpatialHadoop [21], Spa-
tialSpark [60], and GeoSpark [61].

It should be noted that sometimes the partition-

{Q

clipped object

=
&
St

duplicated object

Figure 3: Object duplication vs. object clip-
ping.

ing step is followed by object duplication to neigh-
boring cells. This is typically the case for distance
joins over point data or spatial joins over data with
extent. Also, in the latter case, another alterna-
tive is to perform object clipping, thus separating
an object to multiple parts and assign each part to
a different cell, as shown in Figure 3.

STR partitioning. A widely used partitioning
scheme adopted by several prototypes (Simba [58,
59], SpatialHadoop [21], DITA [49], UlTraMan [17])
is Sort-Tile-Recursive (STR) [35], which is consid-
ered one of the best partitioning schemes for spatial
data. For example, in Simba [58, 59], random sam-
pling is performed over the input data, and then the
first iteration of STR is executed to produce parti-
tion boundaries. Obviously, these partitions may
not cover the entire data space, as they have been
constructed based on a sample only, therefore they
need to be extended to cover the entire data space,
as shown in Figure 4.

R*-Grove [55] has been recently proposed for spa-
tial partitioning, aiming to address some limita-
tions of pre-existing partitioning schemes, such as
STR. Its core idea is to use the node split algorithm
of R*-tree in order to create compact, square-like
partitions, in contrast to the thin and wide parti-
tions that are often produced by STR. In addition,
R*-Grove adopts a load-balancing mechanism that
forces the generation of full blocks.

Quadtree partitioning. Other prototypes sup-
port Quadtree-based partitioning on a data sample
as an alternative technique. Again, the aim is to
produce partitions that take into account the (in-
ferred) data distribution, and handle skewed spatial
distributions gracefully. This approach is supported
by frameworks such as SpatialHadoop [21], Loca-
tionSpark [52], and STJoins@ESRI [56, 57].

K-d tree partitioning. Another approach to
handle skewness of input data is to use a k-d tree,

° o...C. ° « °* o ®
o. () o. o ©
. % % %, e e * e

.. .0. ° L]

15 3 .

() (]

(a) Dataset (b) Sample

b I pp— A/

r- 1 o ! To ®e e
BRI RIS PN
RIS S,)
(g T r'i [y ;‘o !
¥ i

(c) Partition boundaries (d) Extended partitions

Figure 4: Sample-based data partitioning,
followed by extension of partition bound-
aries.

in which the leaves correspond to data partitions
in the distributed file system. This approach is
adopted by AQWA [7] and some statistics are main-
tained in main memory, in order to capture the dis-
tribution of data. Furthermore, AQWA adopts an
adaptive mechanism for partitioning aiming to han-
dle changes in the query workload, where a parti-
tion may be further decomposed in case of updated
data distribution or queries. Other frameworks that
support partitioning based on k-d trees include Spa-
tialHadoop [21] and SpatialSpark [60].

Partitioning based on space-filling curves.
In this approach, the 2D data is mapped in 1D
values using a space-filling curve (such as Z-order
or Hilbert curve), and then partitions are gener-
ated by grouping the 1D values into intervals. Spa-
tialHadoop [21] supports this type of partitioning.
Also, this partitioning scheme is popular in big data
storage systems, such as MD-HBase [42], Pyro [36],
and QUILTS [43].

3.2 Trajectory Partitioning

Some frameworks for trajectory data management
also adopt partitioning techniques such as those de-
scribed above. However, other specialized parti-
tioning techniques are also employed. For exam-
ple, HadoopTrajectory [9] supports both partition-
ing per moving object (so as to have the complete
trajectory in the same partition), as well as spatio-
temporal partitions. These partitions must be small
in order to avoid accessing trajectories that do not
match with the query, but also large enough in or-
der to avoid splitting trajectories into multiple par-
titions.

Finally, a different approach is used by DITA [49],
where the STR algorithm is used, but it operates
on selected points of trajectories, namely the first
and last points of each trajectory. The trajectories

are grouped based on their first points, and then
subgroups are created by grouping based on the last
points. Intuitively, this partitioning technique aims
to group together trajectories with similar starting
positions and similar ending positions.

4. DISTRIBUTED INDEXING

The basic idea behind distributed indexing, which
is adopted by most existing prototypes and systems,
is to employ a two-level indexing scheme.

At the local level, index structures such as R-
trees, Quadtrees, and Grids are typically used. An
alternative approach is to map data to 1D values us-
ing space-filling curves and use traditional B-trees
for local indexing. This latter approach is widely
adopted by NoSQL stores. In the case of spatio-
temporal data, some approaches index first the tem-
poral dimension, and then the spatial dimensions.

At the global level, the most common approach is
to assemble summary information from the local in-
dexes of nodes, in order to build a global index for
directing queries to nodes. Essentially, this sum-
mary is partition boundary information, such the
Minimum Bounding Rectangles (MBRs) that de-
scribe the local data on each node. This is depicted
in Figure 5, which presents the approach adopted
by Simba [58, 59].

4.1 Spatial and Spatio-temporal Indexing

The combination of local and global indexing is
used by several frameworks for big spatial data pro-
cessing. Indicative examples of such frameworks in-
clude Hadoop-GIS [2], SpatialHadoop [21] and Lo-
cationSpark [52]. For the local indexes, classic 2D
data structures are employed: R-tree, Quadtree, as
well as Grid.

In the case of spatio-temporal indexing, one ap-
proach is to first organize data based on time, and
then based on space. ST-Hadoop [4, 6] builds a tem-
poral hierarchy of spatial indexes. This approach
favors queries with high selectivity in the tempo-
ral dimension. Other approaches handle the three
dimensions equally and build spatial indexes in the
3D space. STARK [30] uses R-trees to index spatio-
temporal data, by following this idea.

4.2 Indexing Trajectory Data

In the case of trajectory data, one indexing ap-
proach is to employ the afore-mentioned solutions
for 3D spatio-temporal data. As an indicative ex-
ample, HadoopTrajectory [9] follows this approach
and builds a grid in the 3D space or a 3DR-tree.

However, more specialized indexing techniques tai-
lored for trajectory data are also used. DITA [49]

Global indexing
& f =

Local indexing

Figure 5: Example of global/local indexing.

uses global/local indexes, but proposes an approxi-
mate representation technique for trajectories based
on pivot points. Two indexes are built, one for the
first points of trajectories, and another one for the
last points.

S. QUERY PROCESSING

5.1 Big Spatial and Spatio-temporal Data

In the following, we review query processing tech-
niques for the most standard query types for big mo-
bility data under the global/local indexing scheme.

Range queries. Range queries comprise the
most standard query type supported by all proto-
types and systems. In a distributed system, pro-
cessing a range query typically starts at the level
of global indexing, where the partitions that over-
lap with the query range are identified. Then, each
of these partitions is queried in parallel using its
local index, and the local results are collected and
returned to the user.

Nearest-neighbor queries. Typically, nearest-
neighbor queries can be processed as range queries,
as long as a good radius can be estimated that is
guaranteed to include the k nearest neighbors. Ide-
ally, if the distance to the k-th nearest neighbor was
known in advance, we would retrieve exactly the k
nearest neighbors. Consequently, the major chal-
lenge is accurate radius estimation for the query
range. This issue relates to selectivity estimation
for spatial queries [14, 15]. Also, in a distributed
setting, the range query may intersect with multi-
ple partitions that belong to different nodes in the
system, which need to process the query, thus in-
creasing the cost of query execution.

This approach is followed in AQWA [7], where

given a query q the surrounding cells are visited
in increasing order of minimum distance (MinDist).
As soon as the aggregate count of objects in the
visited cells reaches k, the largest MaxDist of these
cells is used as query radius.

Simba [58, 59] attempts to improve the tightness
of the estimated query radius, by following a two-
step approach. In the first step, the nearest parti-
tions to ¢ that are guaranteed to contain k points
are actually queried, in order to find the k-nearest
neighbors of each partition. Assuming [such parti-
tions, then Simba uses the [- k candidates in order
to compute the k-th minimum distance from ¢, and
uses this value as query radius in the second step
in order to ensure that the k-nearest neighbors are
found. Essentially, Simba computes a tighter ra-
dius, at the cost of processing a k-nearest neighbor
query locally over few partitions.

Joins. For an elaborate survey on spatial join
processing, we refer to [33]. In Hadoop-based big
data systems, such as SpatialHadoop [19, 21] and
Hadoop-GIS [2], spatial joins are processed using
the following approach: first, one data set is sam-
pled and an in-memory index is built using the sam-
ple. Then, the leaf nodes of the index are mapped
to HDF'S blocks, which now contain data with spa-
tial locality. Finally, objects are assigned to HDF'S
blocks based on the MBR of the block, and the join
is performed between blocks, since pairs of blocks
from each relation have the same MBR.

A different approach is applied in the case that
data is stored without a spatial partitioning method.
Quite often, a Grid-based structure is used in order
to re-partition data to grid cells, followed by local
join processing in each cell in parallel. To guarantee
that each partition can be processed independently,
one must handle the case of spatial objects that
may join with objects in other cells, therefore object
duplication to such cells is performed. For exam-
ple, this is the approach followed in GeoSpark [61,
62]. Variations of this method include the use of
data structures that are data-aware (e.g., dynamic
Grid, Quadtree, R-tree, etc.) and use of leaf nodes
as cells. Such data structures can typically cope
better with skewed data distributions. Location-
Spark [51, 52] follows a similar approach where a
sample is taken from the first input, followed by the
construction of a global spatial index. Then, work-
ers re-partition their data based on the leaf nodes of
the global index. When the join is processed, data
from the second input are sent to the correspond-
ing overlapping partitions, in order to produce join
results locally. Notice that the overlapping parti-
tions depend on the type of the join and the type

of spatial objects. In [51], LocationSpark also re-
ports a method for detecting skewed partitions and
splitting them to smaller partitions that are repar-
titioned, in order to reduce the execution time.

More complex joins, as for instance k-NN joins,
have also been studied in a MapReduce context,
for example in [38] using Voronoi partitioning, and
in [66] using Z-order and resulting in an approxi-
mate algorithm. Later, in Simba [59], a centralized
processing step is used that exploits the partitions
of the first dataset (built using STR), an R-tree
built over a sample of the second dataset, in order
to transform the join to n local k-NN joins. DI-
SON [63] is a Spark-based approach for distributed
similarity search and join for trajectory data in road
networks, which computes signatures for trajecto-
ries that are used in a filter-and-refine framework.
Finally, comparisons between the different systems
for different join types are also of interest, e.g., for
distance joins [26].

5.2 Big Trajectory Data

The most prominent and generic works in this
field include HadoopTrajectory [9], DITA [49], Ul-
TraMan [17], and MobilityDB [67], which are re-
viewed in Section 6.

Fang et al. [23] address the problem of k-NN join
by using the MapReduce framework. More specif-
ically, given two sets of trajectories R and S, an
integer k and a time interval [tg, t.], the objective is
to return the k nearest neighbors from R for each
object in S during this interval. In order to achieve
this, a five step procedure (five MR jobs) is adopted,
where the data are preprocessed, subtrajectories are
extracted, the time-dependent upper bound is com-
puted, candidates are found and the trajectories are
joined. The intuition is to find a distance upper
bound d for each trajectory of S, that includes at
least k trajectories from R and then perform a plane
sweep distance join based on d.

Tampakis et al. [50] study a more generic problem
of sub-trajectory join, where the aim is to retrieve
maximal portions of similar trajectories. Their most
efficient algorithm uses a MapReduce job as pre-
processing step in order to repartition data in bal-
anced partitions based on the temporal dimension,
followed by a second MapReduce job that produces
the maximal sub-trajectories that join.

There is also work on joins over objects moving
on road networks [47, 48]. The objective is to find
all pairs of network-constrained trajectories that ex-
ceed a similarity threshold in a parallel manner.
In [47], a two-phase algorithm is proposed that is
parallelized and computes for each trajectory other

similar trajectories in its first phase. Then, dur-
ing the second phase, it performs result merging in
order to deliver the final result. However, the paral-
lelization adopted is per trajectory, which assumes
that all data need to be replicated for each trajec-
tory, a fact that makes such a solution hard to apply
in a big data setting.

6. SYSTEMS & FRAMEWORKS

In this section, we classify existing systems and
frameworks for big spatial and spatio-temporal data
processing. We review systems for scalable storage
(Section 6.1) separately from big data processing
frameworks (Section 6.2). The reason for this dis-
tinction is that although storage systems support
(basic) processing, they offer only limited query-
ing capabilities. For instance, join processing is not
supported by the storage systems, whereas big data
processing frameworks can compute parallel joins
be re-partitioning data across nodes.

6.1 Scalable Storage

Systems that extend scalable storage solutions for
multidimensional data have been proposed, most
notably MD-HBase [42], but also solutions tailored
specifically for spatio-temporal data (Pyro [36]) and
for spatio-temporal RDF data [54], as well as spatio-
textual data (ST-HBase [39]). In all these storage
systems the main underlying challenge is to map
spatial or spatio-temporal data (2D or 3D) to 1-
dimensional (1D) values, which are used as keys for
storage in key-value based NoSQL storage systems.
The mapping is typically achieved using variants
of space-filling curves, such as Z-order, Hilbert, or
Moore encoding. An overview of the different sys-
tems is provided in Table 1.

Essentially, this mapping is necessary in order
to bridge the gap between mobility data and (1D)
key-based NoSQL stores. Based on this mapping
to keys, data is distributed, replicated and stored
based on partitioning techniques that operate at the
level of 1-dimensional key. The challenge is then
to translate spatial and spatio-temporal queries to
multiple 1D range scans and discover efficient and
scalable processing algorithms.

6.1.1 Individual Systems & Techniques

MD-HBase [42] encodes multidimensional data
in 1D values using Z-order encoding. This 1D rep-
resentation is then used by an index layer as a key
for storing data in HBase (the storage layer). In
this way, standard multidimensional index struc-
tures, such as k-d trees and Quadtrees, can be im-
plemented on top of a distributed key-value store.

By using the properties of a technique called longest
common prefix naming scheme, this mapping of mul-
tidimensional indexes to 1D ranges is achieved, of-
fering, in turn, the fundamental mechanism for an-
swering point, range, and nearest-neighbor queries.
R-HBase [32] follows a similar approach.

Pyro [36] employs the Moore encoding algorithm,
inspired from the Moore space-filling curve, in or-
der to transform (map) spatio-temporal data to 1D
values. Then, range queries are translated to multi-
ple 1D range scans, which are processed efficiently
by means of different optimizations introduced at
the storage layer of HDFS, resulting in PyroDFS,
and at an extension of HBase, named PyroDB. In
addition, a multi-scan optimizer is used to find the
best reading strategy from HBase by considering
multiple range scans. Also, a new block grouping
algorithm is introduced at the level of the PyroDFS,
which preserves data locality and improves the effi-
ciency of dynamic load rebalancing. Pyro is shown
to outperform MD-HBase by one order of magni-
tude for rectangular range queries.

ST-HBase [39] focuses on spatio-textual data,
namely data that combines spatial location with
textual description. Typical examples of spatio-
textual data include geo-tagged objects, for instance
tweets, images, etc. ST-HBase resembles the ap-
proach followed by MD-HBase, since it also exploits
Z-order to transform spatial data to 1D values. How-
ever, it goes one step further to support combined
spatial and textual retrieval, by introducing the func-
tionality of an inverted index and representing key-
words along with 1D values as key in HBase. In
this way, textual filtering is supported together with
spatial filtering.

GeoHashes. The concept of GeoHashes has been
exploited to map spatio-temporal data to 1D val-
ues that are stored in Accumulo [25]. Practically, it
relies on a hierarchical spatial data structure that
partitions the data space in cells, which are then
used to build string keys encoded using Base32.
These keys resemble the cell identifiers produced
by a space-filling curve, such as Z-order. A simi-
lar approach is taken by ST-Hash [28], where the
generated 1D values are stored in MongoDB.

datAcron Encoding. In [54], an 1D encoding
scheme for spatio-temporal data is proposed in the
context of the H2020 datAcron project!, which is
applicable for online settings, where the temporal
partitioning needs to be performed as data arrive
in the system [46]. One challenge addressed by
this work is dynamic temporal partitioning, since
the temporal extent of the data is not known in

"http://datacron-project.eu/

System 1D Mapping Data Data Data | Adaptive Queries NoSQL
type space skew store
MD-HBase [42] | Z-order multidimensional static - - range, k-NN HBase
Pyro [36] Moore spatio-temporal static - - range PyroDB
GeoHashes [25] | Z-order spatio-temporal static - - range N/A
ST-Hash (28] Z-order spatio-temporal static - - range MongoDB
ST-HBase [39] | Z-order spatio-textual static - range HBase
datAcron [54] Z-order, Hilbert | spatio-temporal dynamic v - range N/A
QUILTS [43] Generic multidimensional static v v range HBase

Table 1: Comparative overview of storage techniques.

advance, with the objective to keep compact 1D
values. A space-filling curve (Z-order or Hilbert)
is used for the spatial domain, while the temporal
part is encoded in the same identifier. This encod-
ing scheme has been applied for encoding spatio-
temporal RDF data, and specifically in the storage
layer of the DiStRDF [41] engine, which has been
developed in Apache Spark.

QUILTS [43] investigates space-filling curves that
fit a given data skew and query characteristics. A
new method is proposed for partitioning multidi-
mensional data based on a family of space-filling
curves that take into account data skewness and
query workload characteristics. QUILTS is imple-
mented on top of HBase.

6.1.2 Classification

Even though the systems above share many sim-
ilarities, they also have subtle differences that are
important for providing a comprehensive classifica-
tion of storage solutions. We identify four signifi-
cant dimensions for the classification: data dimen-
sionality, statically /dynamically defined data space,
data skew, adaptivity to query workload. The re-
sult of this classification is summarized in Table 1.

First, regarding the data dimensionality, practi-
cally all approaches that rely on space-filling curves
can be applied to multidimensional data. This also
includes spatio-temporal data, which can be seen
as 3D data. One exception is ST-HBase [39] which
targets 2D spatial data and text.

The second observation is whether the underlying
data is constrained to a statically defined space or
whether the data space changes dynamically. Prac-
tically all systems make the assumption that data
is defined within a multidimensional box of known
size. Although data insertions and updates can be
supported, the size of the data space must remain
unchanged, otherwise the space partitions need to
be redefined. The only notable exception is the
mapping proposed in [54], which targets applica-
tions that collect streaming spatio-temporal data
and need to accommodate this data in an online

manner. In this setup, the problem is that the tem-
poral dimension cannot be statically defined, and its
range increases as new data arrive in the system.

Also, only limited works have explicitly focused
on handling data skew. A noteworthy approach is
QUILTS [43], which aims to identify the most ap-
propriate 1D mapping for a given data set, under
the presence of data skew. The approach in [54] also
tackles this problem, focusing mainly on temporal
skew in mobility data.

Finally, adaptive mappings have not been explored
yet. The problem can be stated as finding the best
mapping for a given query workload, and selecting
when the system should adapt its storage at runtime
(e.g., build a different 1D mapping). QUILTS [43]
is the only system that identifies changes in the
query workload that lead to decisions for adapting
the storage scheme.

6.2 Processing Frameworks

Lately, several research projects have extended
popular parallel data processing platforms, such as
Hadoop or Spark, in order to provide customized
solutions for big spatial or spatio-temporal data.
The most prominent prototypes and systems in this
field include Hadoop-GIS [2], SpatialHadoop [21],
AQWA [7], ST-Hadoop [4, 6], SpatialSpark [60],
GeoSpark [61] (recently joined Apache Incubator as
Apache Sedona?), LocationSpark [52], Simba [58,
59], and STARK [30]. We also refer to [29] for a
comparative evaluation of big spatial data process-
ing systems.

6.2.1 Spatial and Spatio-temporal Frameworks

Hadoop-GIS [2] is a large-scale spatial data ware-
housing system for executing spatial queries in par-
allel. It is available both as a library and as an inte-
grated package in Hive, thus facilitating ease of use.
To support indexing, global indexes are built and
replicated on all nodes using Hadoop’s Distributed
Cache. Thus, each node can efficiently determine
the regions of the space that contain relevant re-

*http://sedona.apache.org

[| Framework [Partitioning [Indexing [Queries
Spatial Hadoop-GIS [2] N/A Global/local indexing (global Range queries (box),
region indexes, on demand spatial joins
local indexing)
SpatialHadoop [21] Space partitioning (Grid, Global/local indexing Range queries (box),
Quadtree), data partitioning (R-trees, Grid files) k-NN queries,
(STR, k-d tree), space- spatial join
filling curves (Z-order, Hilbert)
AQWA [7] Adaptive (based on k-d tree) N/A Range queries,
k-NN queries
SpatialSpark [60] Fixed Grid partitioning, Pre-built local Range queries,
binary space partitioning, indexes on HDFS spatial join
tile partitioning
GeoSpark [61] Grid-based partitioning Local indexes (R-tree Range queries, k-NN
and Quadtree) query, spatial join
LocationSpark [52] Data partitioning e.g. Global/local indexing Range queries,
using Quadtree (based (global: Grid and region k-NN query, spatial
on sampling) Quadtree, local: Grid, join, k-NN join,
R-tree, Quadtree, IR-tree) spatio-textual queries
Simba [58, 59] STRPartitioner (sampling IndexRDD Range queries, k-NN
and STR) query, distance
join, k-NN join
Spatio- ST-Hadoop [4, 6] Multi-level temporal Temporal hierarchy of spatial Spatio-temporal range
temporal partitioning indexes at multiple levels queries and joins
of temporal resolution
STARK [30] Spatial-only R-trees Spatio-temporal range
queries and joins
STJoinsQESRI Data (re-)partitioning based Equi-sized splitting of Spatio-temporal join
[56, 57] on Quadtree decomposition complete data set
and local Quadtrees
Trajectory | HadoopTrajectory [9] | MBR-based grouping Global index in the Range queries

and partitioning

form of 3D Grid or 3DR-tree

Parallel Secondo [37] | N/A Local indexing using full- All those offered
featured Secondo DBMS by Secondo
UlTraMan [17] Supports a repartition In-memory: random access Range query, k-NN,
operator to support different RDD using on-heap arrays aggregation,
partitioning strategies or using ChronicleMap, an comovement

(including STR)

embedded, key-value store

pattern queries

DITA [49] Grouping of trajectories based | Global/local indexing: Similarity search,
on first and last point, and (global: two R-trees built similarity join
use of STR for partitioning on MBR of first and last points

respectively, local: trie-like

index on selected points)
MobilityDB Hierarchical partitioning, Local indexing Range, k-NN, not
[10, 11, 67] multidimensional partitioning based on PostGIS distributed joins

Table 2: Overview of spatial and spatio-temporal parallel processing frameworks.

sults for the spatial query at hand. Local indexes
are dynamically constructed on demand, using main
memory. Regarding query types, Hadoop-GIS sup-
ports range queries and spatial joins.
SpatialHadoop [21] is an extension of the basic
Hadoop implementation, designed for efficient pro-
cessing of spatial data, that supports spatial index-
ing, a feature missing from basic Hadoop. Spatial-
Hadoop utilizes a two-layered spatial index which
enables selective access to data by spatial opera-
tions. Implemented indexes include R-trees, R*-
trees and Grid files. In more detail, SpatialHadoop
uses a single global index and several local indexes.
The global index maintains information about the

partitioning.

data partitions across cluster nodes. The local in-
dexes organize data stored on single nodes. Differ-
ent partitioning techniques have been studied and
evaluated [21] in the context of SpatialHadoop, in-
cluding Grid, Quadtree, STR, STR+ and k-d trees,
as well as partitioning based on Z-order and Hilbert
curve. Also, a spatial MapReduce language called
Pigeon [20] is also provided as part of SpatialHadoop,
thus easing the development of scalable applications
that process vast-sized spatial data.

AQWA [7] is a research prototype system that
focuses on adaptive partitioning for big spatial data,
with a strong emphasis on query-workload-aware
AQWA is demonstrated on top of

Hadoop, but its techniques are in principle appli-
cable to other systems as well. In contrast to Spa-
tialHadoop that uses static partitioning, AQWA in-
crementally updates the partitions based on data
changes and the distribution of queries.

SpatialSpark [60] is a prototype implementa-
tion that focuses mainly on efficient processing of
spatial joins in parallel, although range queries are
also supported. For data partitioning to machines,
data partition strategies such as fixed Grid or k-d
tree are employed. SpatialSpark has implemented
several spatial indexing and spatial filtering tech-
niques, and it reuses (at the local level) the pop-
ular JTS? API for spatial refinement, i.e., testing
whether two geometric objects satisfy a certain spa-
tial relationship (e.g., point-in-polygon) or calculat-
ing a certain metric between two geometric objects
(e.g., Eucledian distance).

GeoSpark [61] (Apache Sedona) is a framework
for processing large spatial data. Essentially, it of-
fers a spatial layer built on top of Apache Spark,
alming at providing efficient support for spatial data
processing. GeoSpark uses JTS to create and pro-
cess geometries in order to support different query
types: range queries, k-NN, and spatial join. It
provides a new abstraction named Spatial Resilient
Distributed Datasets (SRDDs). Spatial RDDs, such
as PointRDD and RectangleRDD, are used in or-
der to effectively partition spatial data to different
machines. Partitioning is achieved using a uniform
Grid partitioning mechanism, and spatial objects
that intersect more than one Grid cells are dupli-
cated to all cells. Each RDD partition can be in-
dexed locally using Quadtree and R-tree indexes.
However, global indexing is not supported.

LocationSpark [52] is a spatial data processing
system developed on top of Spark that supports dif-
ferent spatial operators (e.g., range, k-NN, spatial
join, k-NN join). It follows the global/local index-
ing approach, where a global index is used (based on
sampling) to partition data to cluster nodes, while
local indexes are built for each partition. Differ-
ent options are implemented in terms of global and
local indexes. Global indexing of data partitions
is achieved by sampling the data and creating equi-
sized partitions. Each partition is locally indexed on
each machine using a local index of choice, including
a Grid index, an R-tree, a Quadtree, or an IR-tree.
In this way, data skew can be effectively addressed.
Also, the authors address query skew, by means of a
query scheduler that identifies data partitions that
are queried by many queries and chooses to reallo-

3https://sourceforge.net/projects/
jts-topo-suite/)

cate partitions when this cost is affordable. Inter-
estingly, processing of range queries is performed
by exploiting a Spatial Bloom Filter that efficiently
determines whether a point is contained in a spatial
range, thus avoiding the overhead of typical cases
for parallel range query processing: (a) replicating
points to neighboring partitions, or (b) directing a
range query to all overlapping partitions. Experi-
ments report one order of magnitude improvement
in performance compared to GeoSpark.

Simba [58, 59] is a system for in-memory spa-
tial analytics implemented in Spark. It extends the
Spark SQL engine to support spatial query process-
ing and develops an optimizer that can exploit in-
dexes in order to improve the performance of query
processing. At a technical level, Simba introduces
the concept of IndexRDDs, thus allowing efficient
random access in large datasets in memory, thereby
avoiding the limitation of linear (in-memory) scan
of Spark when accessing RDDs. Simba supports
a new partitioning type, named STRPartitioner,
which performs random sampling on the input and
then runs one iteration of the STR algorithm [35]
in order to determine the partition boundaries. The
computed partition boundaries need to be extended
in order to cover the space of the complete data set.

In terms of query operators, Simba supports range
queries, k-NN, distance join, and k-NN joins, and
introduces new physical execution plans to Spark

SQL, in order to efficiently process such spatial queries.

This is a notable difference to other systems, such
as GeoSpark and SpatialSpark, which are libraries
implemented on top of Spark, whereas Simba intro-
duces changes to the kernel of Spark SQL. In this
way, cost-based optimization of spatial queries is
also provided in Simba. Moreover, Simba supports
multiple dimensions, in contrast to most other sys-
tems that are constrained to 2 dimensions. Simba is
evaluated against SpatialHadoop and Hadoop GIS
and is considerably faster, due to the in-memory
processing. Also, Simba is shown to be more effi-
cient than in-memory parallel processing systems,
such as GeoSpark and SpatialSpark, because of its
indexing and query optimizer which are built inside
the query engine of Spark.

ST-Hadoop [4, 6] is an open-source MapReduce
extension of Hadoop tailored for spatio-temporal
data processing. Support for spatio-temporal in-
dexing is a core feature of ST-Hadoop. It is achieved
by means of a multi-level temporal hierarchy of spa-
tial indexes. Each level corresponds to a specific
time resolution (e.g., day, month, etc.). Also, at
each level the entire data set is replicated and spatio-
temporally partitioned based on the temporal res-

olution of that particular level. ST-Hadoop sup-
ports spatio-temporal range queries, aggregations
and spatio-temporal joins. Another recent work
called Summit [5] is based on ST-Hadoop, and fo-
cuses on trajectory data.

STARK |[29, 30] is one of the few existing solu-
tions targeting big spatio-temporal data. STARK
addresses query processing of spatio-temporal data
in Spark, whereas other approaches only consider
the spatial dimensions. STARK supports spatio-
temporal partitioning and indexing using R-trees.
Thus, it supports spatio-temporal filtering and join
operations. However, the temporal dimension is not
treated equally to the spatial dimensions. For ex-
ample, partitioning in [30] is performed solely based
on spatial criteria, and the temporal part of a query
is used to filter out data objects that do not sat-
isfy the temporal constraint. In essence, the tem-
poral dimension is treated as yet another dimension
that can be queried, and it cannot be used for ea-
ger pruning of data in the case of a very selective
temporal constraint.

STJoins@ESRI [56, 57] presents an algorithm
for spatio-temporal join over large spatio-temporal
data sets. It is not a complete system of a frame-
work that supports different functionalities, rather
the focus is on a specific operation. In the case
that one of the inputs is relatively small and fits
in memory of cluster nodes, broadcast join is em-
ployed, where the small data set is sent to all nodes,
whereas the other one is partitioned to the nodes.
In the case that both inputs are large, a repartition
join algorithm is employed, which is called bin join.

6.2.2 Trajectory Management Frameworks

HadoopTrajectory [9] is an extension of Hadoop
that integrates spatio-temporal data types, indexed
access and trajectory operators. At the indexing
level, a global index is constructed (either as 3D
Grid or in the form of 3DR-tree), and it can be
used at query time to identify relevant partitions
at worker nodes to the query at hand. Partitioning
of trajectories can be performed either at trajec-
tory level or per moving object. At the processing
level, various trajectory operators are implemented
as MapReduce jobs, most notably trajectory range
queries.

Parallel Secondo [37] is a hybrid system that
is built using Hadoop in order to efficiently pro-
cess mobility data. It combines Hadoop with a
set of single node instances of Secondo database,
which has been built for mobility data management
and processing. This hybrid coupling is inspired by
an earlier attempt, namely HadoopDB [1], to cou-

ple Hadoop with relational DBMSs. Parallel Sec-
ondo offers the data types and execution language
as a front-end, thus enabling users to express their
queries to the parallel engine transparently, while
using the features of the execution language.

UlTraMan [17] proposes a unified platform for
the complete management cycle of big trajectory
data. It provides both storage and processing layer
for trajectory data. In the storage layer, Chroni-
cleMap is used, an embedded key-value store, which
is integrated in the block manager of Apache Spark.
In the processing layer, Ul'TraMan employs an en-
hanced MapReduce paradigm that provides flexible
APIs to applications. Interestingly, this is one of
the few approaches that target the entire lifecycle
of big trajectory data, from data loading and index-
ing, to processing and analytics. Supported query
operators include range queries, k-NN queries, and
aggregation queries. In addition, co-movement pat-
tern mining on trajectory data is also supported,
demonstrating the trajectory analytics capabilities
of UlTraMan. Dragoon [24] is an extension that
supports both offline and online analytics.

DITA [49] is another recent research prototype
that targets in-memory trajectory analytics, also
extending Apache Spark. It offers an extended Spark
SQL language that facilitates the declarative speci-
fication of queries, but also index construction. Fur-
thermore, DITA extends the Catalyst optimizer of
Spark SQL in order to optimize trajectory similar-
ity queries, using cost-based optimization. At the
indexing level, DITA uses global/local indexes and
proposes an approximate representation technique
for trajectories based on pivot points. For data par-
titioning the STR algorithm is used, operating on
selected points of trajectories, namely the first and
last points of each trajectory. The trajectories are
grouped based on their first points, and then sub-
groups are created by grouping based on the last
points. Then, the global indexing mechanism con-
sists of two R-trees, one constructed on the MBRs
of first points and another one constructed on the
MBRs of last points. The local indexing is a vari-
ant of trie-based indexing which is built on top of
the pivot points of trajectories. At the algorith-
mic/processing level, DITA adopts the filter-and-
refine paradigm, in order to efficiently process sim-
ilarity search and similarity joins.

MobilityDB [10, 11, 67] provides a distributed
system that scales PostgreSQL horizontally over mul-
tiple workers. It uses two partitioning schemes: hi-
erarchical (first based on time, then space) and mul-
tidimensional (where the 3D space is partitioned to
cells) to distribute the data to workers in a load-

balanced way. Distributed MobilityDB supports

many spatio-temporal query types, but not the generic

case of distributed spatio-temporal joins (e.g., self-
join on positions of moving objects) that require
re-distribution of data.

7. CONCLUSIONS & OUTLOOK

In this paper, we provided a succinct overview of
big data processing frameworks and techniques for
spatial, spatio-temporal, and trajectory data, which
are key building blocks for applications that involve
mobility analytics. We presented prototype systems
and frameworks both at the storage layer and at the
processing layer. Moreover, we couple the presen-
tation of individual systems with an explanation of
the most prominent underlying techniques for par-
titioning, indexing and query processing, as a guide
for further research in this field.

Regarding open problems and research directions,
a challenging problem is extending big data frame-
works towards handling spatio-temporal-textual re-
trieval, which is very common in modern applica-
tions. Incorporating text makes the setup high-
dimensional and this raises challenges for effective
indexing and partitioning. Existing efforts [8, 31]
have so far focused on mapping/encoding the tex-
tual information in numeric values to be handled
uniformly with the spatio-temporal information, how-
ever there exist limitations with respect to the used
mappings and they still focus on centralized set-
tings.

Another challenge in a big data setting relates to
management of skewed spatio-temporal data, which
may result in partitions of uneven size. Address-
ing the problem of data skew, in order to achieve
load balancing and minimize the execution time of
distributed query processing, is still a promising re-
search field. In addition to this, learned indexes [44,
45] are researched lately, as an alternative way to
index spatial data by learning the data distribution

Last, but not least, real-time processing and anal-
ysis of spatio-temporal data calls for stream pro-
cessing frameworks and online techniques, often in
conjunction with building concise data summaries
and approximate processing, aiming at low latency
execution. Although this direction is outside the
scope of this survey, we acknowledge research ini-
tiatives in this direction [27, 46].

Acknowledgements

This work was supported by EU projects Track&Know
(Grant Agreement No 780754), Vessel AT (Grant Agree-

ment No 957237), and from the Hellenic Foundation
for Research and Innovation (HFRI) and the Gen-

8.

(1]

[10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(23]

eral Secretariat for Research and Innovation (GSRI),
under Grant Agreement No 1667.

REFERENCES

A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi,

A. Rasin, and A. Silberschatz. HadoopDB: An
architectural hybrid of MapReduce and DBMS
technologies for analytical workloads. Proc. VLDB
Endow., 2(1):922-933, 2009.

A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and
J. H. Saltz. Hadoop-GIS: A high performance spatial data
warehousing system over MapReduce. PVLDB,
6(11):1009-1020, 2013.

M. M. Alam, S. Ray, and V. C. Bhavsar. A performance
study of big spatial data systems. In Proc. of
SIGSPATIAL, pages 1-9, 2018.

L. Alarabi and M. F. Mokbel. A demonstration of
ST-Hadoop: A MapReduce framework for big
spatio-temporal data. PVLDB, 10(12):1961-1964, 2017.
L. Alarabi and M. F. Mokbel. A demonstration of
Summit: A scalable data management framework for
massive trajectory. In Proc. of MDM, pages 226—227,
2020.

L. Alarabi, M. F. Mokbel, and M. Musleh. ST-Hadoop: A
MapReduce framework for spatio-temporal data. In Proc.
of SSTD, pages 84-104, 2017.

A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref,
M. Ouzzani, H. Elmeleegy, and T. Qadah. AQWA:
Adaptive query-workload-aware partitioning of big spatial
data. PVLDB, 8(13):2062-2073, 2015.

Y. Arseneau, S. Gautam, B. G. Nickerson, and S. Ray.
STILT: Unifying spatial, temporal and textual search
using a generalized multi-dimensional index. In Proc. of
SSDBM, pages 11:1-11:12. ACM, 2020.

M. S. Bakli, M. A. Sakr, and T. H. A. Soliman.
HadoopTrajectory: A Hadoop spatiotemporal data
processing extension. J. Geogr. Syst., 21(2):211-235,
2019.

M. S. Bakli, M. A. Sakr, and E. Ziményi. Distributed
mobility data management in MobilityDB. In Proc. of
MDM, pages 238-239, 2020.

M. S. Bakli, M. A. Sakr, and E. Zimanyi. Distributed
spatiotemporal trajectory query processing in SQL. In
Proc. of SIGSPATIAL, pages 87-98, 2020.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,

S. Haridi, and K. Tzoumas. Apache Flink™: Stream and
batch processing in a single engine. IEEE Data Eng.
Bull., 38(4):28-38, 2015.

R. Cattell. Scalable SQL and NoSQL data stores.
SIGMOD Record, 39(4):12-27, 2010.

H. Chasparis and A. Eldawy. Experimental evaluation of
selectivity estimation on big spatial data. In Proc. of
GeoRich, pages 8:1-8:6, 2017.

A. Das, J. Gehrke, and M. Riedewald. Approximation
techniques for spatial data. In Proc. of SIGMOD, pages
695-706, 2004.

A. Davoudian, L. Chen, and M. Liu. A survey on NoSQL
stores. ACM Comput. Surv., 51(2), 2018.

X. Ding, L. Chen, Y. Gao, C. S. Jensen, and H. Bao.
UlTraMan: A unified platform for big trajectory data
management and analytics. PVLDB, 11(7):787-799, 2018.
C. Doulkeridis and K. Ngrvag. A survey of large-scale
analytical query processing in MapReduce. VLDB J.,
23(3):355-380, 2014.

A. Eldawy, L. Alarabi, and M. F. Mokbel. Spatial
partitioning techniques in SpatialHadoop. PVLDB,
8(12):1602-1605, 2015.

A. Eldawy and M. F. Mokbel. Pigeon: A spatial
MapReduce language. In Proc. of ICDE, pages
1242-1245, 2014.

A. Eldawy and M. F. Mokbel. SpatialHadoop: A
MapReduce framework for spatial data. In Proc. of
ICDE, pages 1352-1363, 2015.

A. Eldawy and M. F. Mokbel. The era of big spatial data:
A survey. Foundations and Trends in Databases,
6(3-4):163-273, 2016.

Y. Fang, R. Cheng, W. Tang, S. Maniu, and X. S. Yang.
Scalable algorithms for nearest-neighbor joins on big

(24]

(23]

26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

44]

45]

[46]

trajectory data. IEEE Trans. Knowl. Data Eng.,
28(3):785-800, 2016.

Z. Fang, L. Chen, Y. Gao, L. Pan, and C. S. Jensen.
Dragoon: A hybrid and efficient big trajectory
management system for offline and online analytics. The
VLDB Journal, 30:287-310, 2021.

A. D. Fox, C. N. Eichelberger, J. N. Hughes, and S. Lyon.
Spatio-temporal indexing in non-relational distributed
databases. In Proc. of IEEE Big Data, pages 291-299,
2013.

F. Garcia-Garcia, A. Corral, L. Iribarne,

M. Vassilakopoulos, and Y. Manolopoulos. Efficient
distance join query processing in distributed spatial data
management systems. Inf. Sci., 512:985-1008, 2020.

N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis,
and M. N. Garofalakis. Complex event recognition in the
big data era: A survey. VLDB J., 29(1):313-352, 2020.
X. Guan, C. Bo, Z. Li, and Y. Yu. ST-hash: An efficient
spatiotemporal index for massive trajectory data in a
NoSQL database. In Proc. of Geoinformatics, pages 1-7,
2017.

S. Hagedorn, P. Gotze, and K. Sattler. Big spatial data
processing frameworks: Feature and performance
evaluation. In Proc. of EDBT, pages 490-493, 2017.

S. Hagedorn, P. Gétze, and K. Sattler. The STARK
framework for spatio-temporal data analytics on Spark.
In Proc. of BTW, pages 123-142, 2017.

T. Hoang-Vu, H. T. Vo, and J. Freire. A unified index for
spatio-temporal keyword queries. In Proc. of CIKM,
pages 135-144, 2016.

S. Huang, B. Wang, J. Zhu, G. Wang, and G. Yu.
R-HBase: A multi-dimensional indexing framework for
cloud computing environment. In Proc. of ICDMW,
pages 569-574, 2014.

E. H. Jacox and H. Samet. Spatial join techniques. ACM
Trans. Database Syst., 32(1):7, 2007.

H. V. Jagadish, J. Gehrke, A. Labrinidis,

Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan, and
C. Shahabi. Big data and its technical challenges.
Commun. ACM, 57(7):86-94, 2014.

S. T. Leutenegger, J. M. Edgington, and M. A. Lépez.
STR: A simple and efficient algorithm for R-tree packing.
In Proc. of ICDE, pages 497-506, 1997.

S. Li, S. Hu, R. K. Ganti, M. Srivatsa, and T. F.
Abdelzaher. Pyro: A spatial-temporal big-data storage
system. In Proc. of USENIX, pages 97-109, 2015.

J. Lu and R. H. Giiting. Parallel SECONDO: Practical
and efficient mobility data processing in the cloud. In
Proc. of IEEE Big Data, pages 17-25, 2013.

W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient
processing of k nearest neighbor joins using MapReduce.
Proc. VLDB Endow., 5(10):1016-1027, 2012.

Y. Ma, Y. Zhang, and X. Meng. ST-HBase: A scalable
data management system for massive geo-tagged objects.
In Proc. of WAIM, pages 155-166, 2013.

S. Maguerra, A. Boulmakoul, L. Karim, and B. Hassan. A
survey on solutions for big spatio-temporal data
processing and analytics. In Proc. of INTIS, pages
127-140, 2018.

P. Nikitopoulos, A. Vlachou, C. Doulkeridis, and G. A.
Vouros. DiStRDF: Distributed spatio-temporal RDF
queries on Spark. In Proc. of BMDA, pages 125-132,
2018.

S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi.
MD-HBase: A scalable multi-dimensional data
infrastructure for location aware services. In Proc. of
MDM, pages 7-16, 2011.

S. Nishimura and H. Yokota. QUILTS: Multidimensional
data partitioning framework based on query-aware and
skew-tolerant space-filling curves. In Proc. of SIGMOD,
pages 1525-1537, 2017.

V. Pandey, A. van Renen, A. Kipf, J. Ding, I. Sabek, and
A. Kemper. The case for learned spatial indexes. In Proc.
of AIDB, 2020.

J. Qi, G. Liu, C. S. Jensen, and L. Kulik. Effectively
learning spatial indices. Proc. VLDB Endow.,
13(11):2341-2354, 2020.

G. M. Santipantakis, A. Glenis, K. Patroumpas,

A. Vlachou, C. Doulkeridis, G. A. Vouros, N. Pelekis, and

[47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

[56]

(57]

(58]

(59]

(60]

[61]

[62]

(63]

(64]

(65]

(66]

[67]

Y. Theodoridis. SPARTAN: Semantic integration of big
spatio-temporal data from streaming and archival sources.
FPuture Gener. Comput. Syst., 110:540-555, 2020.

S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and
P. Kalnis. Trajectory similarity join in spatial networks.
Proc. VLDB Endow., 10(11):1178-1189, 2017.

S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and
P. Kalnis. Parallel trajectory similarity joins in spatial
networks. VLDB J., 27(3):395-420, 2018.

Z. Shang, G. Li, and Z. Bao. DITA: Distributed
in-memory trajectory analytics. In Proc. of SIGMOD,
pages 725-740, 2018.

P. Tampakis, C. Doulkeridis, N. Pelekis, and

Y. Theodoridis. Distributed subtrajectory join on massive
datasets. ACM Trans. Spatial Algorithms Syst.,
6(2):8:1-8:29, 2020.

M. Tang, Y. Yu, W. G. Aref, A. R. Mahmood, Q. M.
Malluhi, and M. Ouzzani. LocationSpark: In-memory
distributed spatial query processing and optimization.
CoRR, abs/1907.03736, 2019.

M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G.
Aref. LocationSpark: A distributed in-memory data
management system for big spatial data. PVLDB,
9(13):1565-1568, 2016.

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M.
Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,

J. Donham, N. Bhagat, S. Mittal, and D. V. Ryaboy.
Storm@twitter. In Proc. of SIGMOD, pages 147-156,
2014.

A. Vlachou, C. Doulkeridis, A. Glenis, G. M.
Santipantakis, and G. A. Vouros. Efficient
spatio-temporal RDF query processing in large dynamic
knowledge bases. In Proc. of SAC, pages 439-447, 2019.
T. Vu and A. Eldawy. R*-Grove: Balanced spatial
partitioning for large-scale datasets. Frontiers Big Data,
3:28, 2020.

R. T. Whitman, B. G. Marsh, M. B. Park, and E. G.
Hoel. Distributed spatial and spatio-temporal join on
Apache Spark. ACM Trans. Spatial Algorithms Syst.,
5(1):6:1-6:28, 2019.

R. T. Whitman, M. B. Park, B. G. Marsh, and E. G.
Hoel. Spatio-temporal join on Apache Spark. In Proc. of
SIGSPATIAL, pages 20:1-20:10, 2017.

D. Xie, F. Li, B. Yao, G. Li, Z. Chen, L. Zhou, and

M. Guo. Simba: Spatial in-memory big data analysis. In
Proc. of SIGSPATIAL, pages 86:1-86:4, 2016.

D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo.
Simba: Efficient in-memory spatial analytics. In Proc. of
SIGMOD, pages 1071-1085, 2016.

S. You, J. Zhang, and L. Gruenwald. Large-scale spatial
join query processing in cloud. In Proc. of ICDEW,
pages 34-41, 2015.

J. Yu, J. Wu, and M. Sarwat. A demonstration of
GeoSpark: A cluster computing framework for processing
big spatial data. In Proc. of ICDE, pages 1410-1413,
2016.

J. Yu, Z. Zhang, and M. Sarwat. Spatial data
management in Apache Spark: The GeoSpark perspective
and beyond. Geolnformatica, 23(1):37-78, 2019.

H. Yuan and G. Li. Distributed in-memory trajectory
similarity search and join on road network. In Proc. of
ICDE, pages 1262-1273, 2019.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proc. of
NSDI, pages 15-28, 2012.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,
A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J.
Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and

I. Stoica. Apache Spark: A unified engine for big data
processing. Commun. ACM, 59(11):56-65, 2016.

C. Zhang, F. Li, and J. Jestes. Efficient parallel kNN joins
for large data in MapReduce. In E. A. Rundensteiner,

V. Markl, I. Manolescu, S. Amer-Yahia, F. Naumann, and
I. Ari, editors, Proc. of EDBT, pages 38-49, 2012.

E. Ziméanyi, M. A. Sakr, and A. Lesuisse. MobilityDB: A
mobility database based on PostgreSQL and PostGIS.
ACM Trans. Database Syst., 45(4):19:1-19:42, 2020.

