
Tearing Down the Tower of Babel: Unified and
Efficient Spatio-temporal Queries for NoSQL Stores

Nikolaos Koutroumanis
Dept. of Digital Systems

University of Piraeus
Piraeus, Greece

koutroumanis@unipi.gr

Christos Doulkeridis
Dept. of Digital Systems

University of Piraeus
Piraeus, Greece
cdoulk@unipi.gr

Akrivi Vlachou
Dept. of Inf. & Com. Syst. Engineering

University of Aegean
Karlovasi, Greece

avlachou@aegean.gr

Abstract—NoSQL stores are used extensively for scalable
storage and efficient querying of large spatio-temporal data
collections in modern applications. Yet, despite their popularity,
NoSQL systems have two main limitations when confronted with
spatio-temporal data: (a) they do not offer optimized indexing
methods, and (b) they still rely on heterogeneous languages and
lack of standardization in data access, a situation bearing resem-
blance to the narrative of the tower of Babel. To address these
limitations, we propose NODA, a system for scalable querying
of spatio-temporal data stored in different NoSQL stores in a
unified way. NODA relies on an abstraction layer that consists of
data access operators with clear semantics, that provides a unified
view of the underlying NoSQL stores. Furthermore, NODA offers
spatio-temporal operators that are internally implemented in an
efficient way, by taking into advantage the individual features of
each NoSQL store. Capitalizing on the query operators, NODA
provides a declarative interface based on a SQL-like language,
allowing users to query different NoSQL stores using SQL. Our
experiments demonstrate that NODA significantly improves the
performance of spatio-temporal querying over different types of
NoSQL stores.

Index Terms—NoSQL, spatio-temporal queries

I. INTRODUCTION

NoSQL stores [1, 2] are increasingly adopted by modern
applications and enterprises for scalable storage and efficient
querying over vast data collections. Their advantages include
support for flexible and schemaless data models [2], high
availability and scalability, as well as faster time to market. As
a result, they are extensively used for querying large spatio-
temporal data collections and for mobility analytics [3].

Nevertheless, despite the popularity of NoSQL stores for
scalable querying, two major limitations come up when con-
fronted with spatio-temporal data: (a) they do not support opti-
mized indexing methods, and (b) they use different languages
for data access. Regarding indexing, most NoSQL stores offer
(in the best case) limited support for spatial data (not spatio-
temporal), which has an effect on the performance of spatio-
temporal queries [4]. Therefore, it becomes imperative to
propose optimized data access methods for spatio-temporal
data that can be integrated in today’s NoSQL stores.

Regarding different query languages, the current situation
is that each NoSQL store provides its own query language or
API. Consequently, big data developers need to acquire an in-
depth understanding of the individual language/API of NoSQL

stores and the supported features, in order to integrate NoSQL
stores into their architectures. Perhaps more importantly, this
hinders the seamless transition from one NoSQL store to
another, as the application code is tightly coupled to the
selected NoSQL store. In turn, this contrasts application de-
velopment in relational databases, which is greatly facilitated
by standardized data access, e.g., using ODBC/JDCB.

Motivated by these shortcomings, in this paper, we propose
NODA (NoSQL Data Access Operators), a system for unified
and efficient querying of spatio-temporal data over different
NoSQL stores. NODA relies on an abstraction layer that
consists of simple data access operators with clear semantics
that can be easily combined by method chaining to form
complex expressions. To further improve usability, we build a
declarative SQL-like interface on top of NODA’s data access
operators, thereby lifting the limitation of having to learn
yet another language. In addition, NODA incorporates spatio-
temporal operators (range, k-NN) for querying data with
spatial and temporal constraints. Even though it is not trivial
to implement spatio-temporal queries efficiently for different
NoSQL stores, we present design choices tailored for each
category of NoSQL stores that boost the performance of query
processing.

In summary, the contributions of this work include:

• We propose NODA, an abstraction layer that consists
of data access operators that provide unified access to
NoSQL stores, as well as a declarative interface on top of
the data access operators, which practically allows using
SQL to query different NoSQL stores (Sect. III).

• We present the design and implementation of the spatio-
temporal operators of NODA over three widely different
NoSQL stores (a document-oriented store, a wide-column
store and a key-value store) that use diverse data models
and languages (Sect. IV).

• We report on the performance gains of NODA, by eval-
uating experimentally spatio-temporal queries over three
NoSQL stores (MongoDB, HBase, and Redis) (Sect. V).

In addition, we review related work in Sect. II and we conclude
in Sect. VI. The preliminary concept of NODA has been
demonstrated in [5, 6]. In this paper, we unveil the mature
design and implementation of NODA over three NoSQL stores

that belong to different categories, we present the declarative
interface, and we provide an in-depth study of the spatio-
temporal queries of NODA.

II. RELATED WORK

Scalable spatial data stores. Several research prototypes
target scalable storage and indexing of spatial data, by ex-
ploiting a NoSQL store. However, most of these systems are
tightly integrated with one specific NoSQL store [3], e.g.,
Pyro [7] is built on top of HBase, SECONDO’s distributed
version [8, 9] employs Cassandra, etc. In contrast, GeoMesa
provides spatio-temporal indexing [10] over persistent storage,
while supporting different backends (e.g., Accumulo, Redis,
HBase, Bigtable and Cassandra). However, a critical difference
is that NODA exposes specific data access operators to the
developer and a declarative language, thus aiming at easy
integration with application code. Our work is also related
to in-memory processing systems for spatial data, such as
GeoSpark [11], LocationSpark [12], DITA [13] and Beast [14].
However, these systems mainly target efficient in-memory pro-
cessing and analysis of spatial data, which is complementary
to our work. In fact, they could benefit from coupling with
NODA as underlying layer for efficient data access from
different NoSQL stores.

SQL on NoSQL stores. The majority of NoSQL sys-
tems offer their own native query languages for data access.
Lately, some NoSQL systems, such as CouchDB, ArangoDB,
Couchbase, OrientDB and DynamoDB, additionally support
data access via an SQL-like language, apart from their native
language. Clearly, the trend is to empower NoSQL stores with
SQL support, e.g., Google’s Spanner [15], Pig Latin [16],
Hive [17], SparkSQL [18] and Zidian [19]. NoSQLBooster
is a complete IDE for MongoDB from which a user can issue
SQL queries, which are translated to the native language of
MongoDB for query execution. Apache Phoenix can be added
on HBase for running an SQL query, which is translated to a
series of scans on the store. However, all these approaches are
optimized for individual NoSQL stores, and do not address
the problem of diversity in data models nor language het-
erogeneity. Facebook’s Presto [20] (recently known as Trino)
is an SQL-compliant query engine that operates on a wide
variety of different data sources, such as RDBMS, NoSQL and
stream processing systems. However, NODA supports spatial
and spatio-temporal data, whereas Presto is not optimized for
this domain.

Polystores/Multistores. Our work also relates to the cat-
egory of database management systems that are built on
top of different, heterogeneous, integrated storage engines,
e.g., BigDAWG [21, 22], Icarus [23], CloudMdsQL [24] and
Optique [25] (a semantic polystore). Such systems offer a
standard query interface and users formulate queries using
a common (SQL-like) language, such as the one described
in [26] for managing data from multiple stores. This hides
the peculiarities of the underlying stores from the users,
offering a single view of the system. In comparison with
polystores, NODA also targets efficient and seamless data

access across NoSQL stores, but it is not tightly integrated with
the underlying stores. Thus, NODA can be extended in a much
easier way to new NoSQL stores, by simply implementing its
API for the new store. Apache Wayang [27] is an abstraction
layer that supports the execution of data processing tasks
over multiple data processing platforms. It integrates a set
of operators and an optimizer [28] for cross-platform query
execution. So far, Wayang does not operate upon any NoSQL
store, covering Postgres and SQLite relational databases.

III. THE NODA ABSTRACTION LAYER

In this section, we describe the NODA abstraction layer for
uniform access to different NoSQL stores. Its objective is to
offer a developer-friendly abstraction, which can be exploited
to provide simple and unified access to scalable NoSQL stores.
Simple, in terms of using a familiar vocabulary of generic
operations, without mixing the data model and the query
language of the individual NoSQL store in the application
code. Unified, because the exact same operations are used for
querying different NoSQL stores.

A. Concept

Figure 1 provides a graphical illustration of the NODA
abstraction layer on top of NoSQL stores. NODA resides
between application code and data storage as a bridge for
data access, and aims at “hiding” the query language of the
underlying store from the developer. Essentially, a big data
developer expresses her code using the NODA abstraction
and attains two benefits: (a) NODA hides the peculiarities
and complexity of accessing the specific NoSQL store, and
(b) the exact same code can be used to query data stored in
different NoSQL stores, no matter how different their query
languages are. NODA is readily implemented over MongoDB,
HBase and Redis, demonstrating its applicability over diverse
NoSQL stores regarding the underlying data model.

In more technical terms, NODA consists of a programming
API and a SQL interface. The programming API provides a set
of basic data access operators, which are commonly provided
by all NoSQL stores. Examples of data access operators
include filter, project, groupBy, aggregate and
sort. In turn, this enables the provision of an SQL interface
to end users, which translates an SQL query to a sequence
of data access operators. Moreover, the retrieved data objects
can populate a Spark Dataframe in order to undergo (more
complex) in-memory, data-parallel processing.

B. The Programming API

By design, NODA performs operations on sets of data
objects, which are described by fields and corresponding
values. The data objects are stored at a NoSQL store. Before
applying operations, a specific set of objects must be selected.
Practically, this selection is equivalent to determining a spe-
cific collection (in case of document-oriented stores), a table
with multiple columns (in case of wide-column stores), or a
set of key-value pairs (in case of a key-value store). After

Programming API
SQL Interface

NoDA Engine

Spark
Initialization

SQL Query
API

Apache Spark

Results

aggregategroupBysort project

filter

Core Module

Redis
Module

MongoDB
Module

HBase
Module

Dataframe

Pass Spark
Session

Fig. 1: The NODA concept.

determining a specific set of data objects, operations can be
applied on fields of these objects.

The programming API is used in the following way. First, a
connection is established to the underlying NoSQL store and
a concrete set of data objects is specified. Then, a query is
formulated for execution, by specifying a sequence of data
access operators, using method chaining.

Listing III.1: Code template for expressing queries using
NoDA.

1 Dataset<Row> dataset = noSqlDbSystem.operateOn("table_name")
2 .filter(...).filter(...) //definition phase
3 .groupBy(...).sort(...) //definition phase
4 .project(...) //definition phase
5 .toDataframe(); //execution phase

Listing III.1 depicts the template code for expressing a
query by means of a sequence of data access operators in
NoDA. The noSqlDBSystem is an object reference (line 1)
of NoSqlDBSystem object that has been instantiated (not
shown in the Listing) with the connection details of a NoSQL
store. This object can be optionally associated with a Spark
session, which is useful for fetching the data objects in the
form of a Spark Dataframe as well as for certain complex
data processing tasks that cannot be “pushed-down” to the
NoSQL store. Then, the collection name is specified using
the operateOn method. Lines 2–5 show how the different
operations can been specified. Inspired by Apache Spark’s lazy
execution model [18] that separates transformations from ac-
tions and invokes execution when an action is met, operations
in NODA are also separated in two phases: definition and
execution phase. Essentially, the operators correspond to stages
in a multi-stage pipeline. Multiple stages can be declared in the
pipeline, which are executed only when an operator is found
that belongs to the execution phase. All operators in the listing
belong to the definition phase, except of toDataFrame
which belongs to the execution phase. Apart from this, the

execution phase also includes aggregate operations, such as
max/min/sum/avg or count, which return a number. Also,
the limit, aggregate and distinct operators belong to
the definition phase. The aggregate operator allows a user
to perform multiple aggregations within a single execution of
operations, which is not feasible in the execution phase.

C. Implementation Aspects
1) Document-oriented Stores: MongoDB is a document-

oriented, semi-structured NoSQL store, where data is modeled
as documents (binary JSON objects) that contain fields associ-
ated with values. Documents are grouped in collections and the
documents in a collection usually have the same interpretation.
However, the schema of documents may vary.

The implementation of NODA exploits the aggregation
pipeline framework provided by MongoDB. The rationale
behind this framework is that documents enter a multi-stage
pipeline that transforms them. The pipeline supports various
MongoDB. operators (e.g., $match, $project, $group, etc.),
which can be combined so as to produce the desired results.

Dataset<Row> df = noSqlDbSystem

 .operateOn("books")

 .filter(eq("genre","Novel"))

 .sort(asc("year"))

 .project("title")

 .toDataframe()

db.books.aggregate([

 {$match:{genre: "Novel"}},

 {$sort:{year: 1}},

 {$project:{title: 1}}

])NoDA Code MongoDB Code

Fig. 2: Query transformation from NODA to MongoDB.

Figure 2 shows how a query expressed as a sequence of data
access operators is translated to the language of MongoDB.
The expression on the left part of the figure is NODA
code, whereas the MongoDB-specific code that is eventually
executed is depicted on the right. Essentially, NODA pro-
vides concrete implementations of abstract operators using
the language of the NoSQL store. In this example, filter
is translated to MongoDB’s $match operation, while sort
and project are translated to their respective counterparts.
With operateOn, we determine the collection of MongoDB
which will be queried (“books”) and the aggregation pipeline
is initiated.

2) Wide-column Stores: In this NoSQL category, data is
stored in tables that contain multiple columns. A row is
composed of a row key and columns associated with values.
Rows are stored in lexicographic order by their key. Columns
are grouped into column families and are referenced as fam-
ily:qualifier. A column family has its own storage properties,
and all columns underneath it are stored in the same storage
file (HFile). A column represents an attribute, containing one
or more cells that hold a value as a serialized object (arbitrary
array of bytes). HBase supports efficient range scans based
on the row key, whereas queries that do not use the row key
are resolved using a full table scan. Also, a good practice
is to form a column family with columns that are frequently
accessed together by queries, for more efficient access.

HBase provides miscellaneous filters that operate at the level
of row, row key, column family, column and cell. In NODA,

a data access operator corresponds to one or more HBase
filters. NODA exploits these filters in the implementation of
data access operators, by combining them in a filter list. A
record is returned only if it complies with the individual
filters in the filter list. In this way, we achieve to transform
complex operations to a series of HBase filters for fetching the
desired results. In more details, a comparison operator under
the filter data access operator uses a single column value
filter, which performs cell scan given a column’s qualifier,
family name and a value. A logical operator (and, or) is
transformed to a filter list containing filters that must be all
satisfied (conjunction) or at least one of them (disjunction).
The project access operator may use a family filter for the
projection of a whole column family, or a filter list containing
a family filter and a qualifier filter for the projection of a
specific column. The limit access operator uses the page
filter to limit the results.

Dataset<Row> df = noSqlDbSystem.operateOn("orders")

 (S) .filter(and(eq("customer:city","Athens"),

 gt("order:price",100)))

 (F, Q) .project("customer","order:id")

 (P) .limit(500)

 .toDataframe();

S = FilterList(

 SingleColumnValueFilter("customer:city",EQUAL,"Athens"),

 SingleColumnValueFilter("order:price",GREATER,100)

) -> MUST_PASS_ALL

F = FamilyFilter(EQUAL,"customer") P = PageFilter(500)

Q = FilterList(

 FamilyFilter(EQUAL,"order")

 QualifierFilter(EQUAL,"id")) -> MUST_PASS_ALL

Result:

 FilterList(S, F, Q, P) -> MUST_PASS_ALL

NoDA Code

HBase Code

Fig. 3: Query transformation from NODA to HBase.

Figure 3 explains the transformation of a query from NODA
to HBase filters by means of an example. The operation is
performed on a table named “orders”, which is composed of
two column families. The first column family holds customer-
related information, while the other order-related information.
The operation retrieves rows corresponding to customers that
reside in the city of Athens and their order is worth more than
100 euros (filter operator). The fetched rows include all
of the columns of “customer” family and the “id” column of
the “order” family as well (project operator). The results
are limited to the first 500 rows (limit operator). NODA
executes the operation by grouping the respective filters (single
column value (S), family (F), qualifier (Q) and page (P) filters)
under a single filter, whose constraints must be fulfilled by the
retrieved rows. The S filter combines two single column value
filters under a conjunctive condition. These filters operate
on the columns “city” and “price” of the “customer” and
“order” column families respectively. The F filter is related
to the projection of the columns whose column family name is
“customer”. The Q filter applies the projection with two filters

under a conjunctive condition. The column qualifier should be
“id” and the column family should be “order”. Finally, the
P filter limits the number of retrieved results.

3) Key-values Stores: Redis is an in-memory, key-value
store that inherently supports a data model of low expressive
power. This makes the instantiation of NODA more challeng-
ing. Objects in Redis are modeled as key-value pairs, and
individual objects can be accessed by key efficiently.

Therefore, in order to implement NODA over Redis, we
need to design an effective data representation. To this end, an
object (that consists of fields with associated values) is stored
as a key-value entity, where the key is a unique identifier,
while the value is a hash structure that associates fields with
their corresponding values. In this way, we achieve retrieval
by object identifier in constant time. Furthermore, to support
efficient object retrieval by a field’s value, we insert additional
information in the key-value store. In more detail, we discern
two cases: categorical and numerical fields. For a categorical
field cf that takes values {v1, v2, . . . }, we generate keys
{cf : v1, cf : v2, . . . } that combine the field name and its
values. Each of these keys is associated with a set structure
as value. The set for key cf : vi contains all object identifiers
that have value vi in field cf . In this way, we can retrieve
in constant time all object identifiers with a specific value in
a field. Numerical fields are stored in a different way. Each
numerical field nf is stored as a key associated with a sorted
set as value. Each element of the sorted set consists of the
object identifier and a score that keeps the value of the object
for field nf . The elements of the sorted set are sorted by score,
which provides retrieval of the object identifier by value in
logarithmic time.

The execution of the data access operations on top of Redis
is achieved by utilizing the Redis pipelining. In this way,
we are able to send multiple commands to the server at a
single step. The pipeline is materialized by scripts written in
Lua, which perform server-side operations. When defining data
access operators in NODA, these are transformed into Lua
scripts and are added to the pipeline, so as to be executed
as a group. The scripts on the pipeline simulate a chain of
operations. Each operation emits intermediate results, which
are combined in order to reach the final results of the defined
operations. The intermediate results are stored in temporary
sets that expire eventually. Their key is randomly generated,
and their value is a set that holds the object identifiers.

Figure 4 shows the transformation of an operation expressed
in NODA to Redis scripts, over a database that holds infor-
mation about movies. The operation counts the number of
movies that Ron Howard directed after 2010. For its execution,
at first the targeted set is determined given the attribute
(“director”) and a value (“Ron Howard”). The set contains
all of the identifiers of the movies that have been directed by
the specified director. Then, the comparison (gte) condition is
performed on the sorted set that handles the “year” attribute.
This is achieved by the ZRANGEBYSCORE command which
retrieves the movies’ identifiers that were released after 2010.
The identifiers are stored in a temporary key-value entity (com-

int i = noSqlDbSystem.operateOn("movies")

 .filter(and(eq("director","Ron Howard"),

 gte("year",2010)))

 .count();

 ZRANGEBYSCORE movies:year 2010 +inf

 //store the results (ids’) in a Set with key X

 EXPIRE X 100

 SINTERSTORE "movies:director:Ron Howard" X Y

 EXPIRE Y 100

 SCARD Y Redis Code

NoDA Code

Fig. 4: Query transformation from NODA to Redis.

mands in Lua were written for this purpose), whose key name
is “X”, which will expire after 100 seconds. Subsequently,
given the two key-value entities with key name “director:Ron
Howard” and “X”, the SINTERSTORE command is executed,
storing the common identifiers that are found in both sets, in
a new temporary set named “Y”, which is also set to expire
after 100 seconds. Finally, the SCARD command runs on “Y”
set, returning the number of the contained elements.

D. The Declarative Interface

As already mentioned, the programming API offers nu-
merous advantages, including the ease of understanding, as
well as being simple and unified. However, the programming
API of NODA is yet another language that needs to be
learnt by big data developers and data scientists. To remove
this obstacle, NODA incorporates a module which supports
declarative querying using an SQL-like query language. We
emphasize this novel feature of our approach that it enables
querying different NoSQL stores using SQL.

Given a query expressed in SQL, we identify its constituent
SQL clauses, and map each clause to a specific NODA
operation. Thus, the SQL query is translated into a sequence
of NoDA operations, which can then be forwarded to the
underlying NoSQL store, after translation to the language
of the store. In our current implementation, the order of
NODA operations follows a rule-based approach. For example,
selections and projections comprise the first operations in
the sequence. This is because query optimization is left to
the underlying NoSQL store. For example, stores such as
MongoDB have their own query optimizer, whose task is
to identify the best plan for query execution. For NoSQL
stores that do not provide query optimization, our rule-based
approach that pushes down operations that restrict the size of
intermediate results works well in practice.

SELECT city,AVG(price_day)
FROM hotels
WHERE star = 5
GROUP BY city
HAVING AVG(price_day)>500
ORDER BY AVG(price_day)
LIMIT 20

.operateOn("hotels")

.filter(eq("star",5))

.groupBy("city")

.aggregate(avg("price_day"))

.filter(gt(“AVG(price_day)",500))

.project("city","AVG(price_day)")

.sort(asc("AVG(price_day)"))

.limit(20)

Fig. 5: Mapping of SQL query to NODA operations.

Figure 5 illustrates how a query expressed in a language
similar to SQL is mapped to NODA operations. The query is
performed on a data source (e.g., a table or a collection) named
hotels, which is stored in a NoSQL store. The query retrieves
the top-20 cities with the highest average price per day of their
5-star hotels, having a minimum price (500). The clauses of
the SQL statement are coloured in order to clearly illustrate the
correspondence to NODA operations, which are indicated with
the same colour. Similarly to the programming API, the SQL
interface also supports user-defined functions (UDFs) in order
to define customized operations such as spatial and spatio-
temporal.

The implementation of the SQL module is based on ANTLR
(https://www.antlr.org/), which is a parser generator for read-
ing, processing, executing, or translating structured text or
binary files. Given a grammar, ANTLR generates a parser,
builds parse trees, and generates a listener interface (or visitor)
that makes it feasible to recognise phrases and respond with
specific actions. In our case, the actions that have been injected
in those generated units, are related to the creation of the
appropriate objects from NODA’s programming API, so as
to form the respective sequence of operations. We use the
grammar file of Presto [20].

IV. SPATIO-TEMPORAL QUERIES IN NODA

In this section, we present the design choices and imple-
mentation techniques of NODA for supporting efficient spatio-
temporal queries over NoSQL stores.

A. Overview

Towards providing support for spatio-temporal operations,
in addition to common operators such as boolean and compar-
ison ones, NODA supports operators oriented to spatial (2D)
and spatio-temporal (3D) data, called Geographical Operators
(or Geo-Operators in short).

Listing IV.1: Spatial k-NN query.

1 Coordinates c = Coordinates.newCoordinates(23.7613,37.9864);
2 Dataset<Row> dataset = noSqlDbOp
3 .filter(geoNearestNeighbors("location",c,2))
4 .toDataframe();

Listing IV.1 shows an example of a k-nearest neighbor
(k-NN) query, expressed in NODA. The query retrieves the
2 nearest objects to query point c. In practice, passing a
Geo-Operator to the filter method is equivalent to a filtering
operation on a specific type of spatial or spatio-temporal data.

Since k-NN queries are usually not optimally supported by
NoSQL stores1, NODA transforms a k-NN query to a range
query using a radius estimation technique. For this purpose,
NODA builds a QuadTree [29] over a sample of the data, and
keeps the number of enclosed objects in its leaf nodes. The
QuadTree is exported in serialized file on disk, and is loaded

1For example, MongoDB uses the $geoNear operator to support k-NN
queries, but additionally requests to specify a maximum radius for search,
which may fail to retrieve k results. If the maximum radius is not specified,
all objects are accessed.

https://www.antlr.org/

in-memory, when k-NN queries are issued. Then, at query
time, we search for the leaf node that encloses the query point,
and we compute the minimum radius for the range query that
is guaranteed to enclose the leaf nodes that contain at least k
objects.

B. NODA over a Document-oriented Database

MongoDB provides built-in support for spatial data by
means of the GeoJSON object type, which is used to represent
various geometries, such as points and polygons. This kind of
data is accessed by geospatial operators such as the $geoNear,
$geoWithin and $centerSphere, which can take advantage of
the built-in spatial indexes (2d and 2dsphere) for efficient
query execution. Nevertheless, spatio-temporal data is not
inherently supported.

In order to effectively model spatio-temporal data in Mon-
goDB, we model each spatio-temporal point as an individual
document, which stores the location field (storing the coordi-
nates) and the temporal field. We exploit the Hilbert space-
filling curve [30] to derive an 1D approximation of the spatial
location of each object, and we equip each document with a
field (hilbertIndex) that keeps its Hilbert value.

The rationale behind this design decision is the following.
In a MongoDB cluster, where data is partitioned to shards, the
field that represents the spatial information cannot be used for
partitioning, i.e., as shard key. This is a limitation of MongoDB
as of now. In turn, this practically means that only temporal
partitioning is supported, which is clearly sub-optimal for
spatio-temporal queries as it affects data locality. To alleviate
this shortcoming, we apply a custom solution for spatio-
temporal partitioning, using as a shard key the combination of
fields: {hilbertIndex, date}, which has been shown to
improve the performance of spatio-temporal queries, because
it preserves spatio-temporal data locality better [4].

db.collection.aggregate([

 { $match: { $and: [

 { $or: [

 { hilbertIndex: { $gte: 25436, $lte: 26684 } },

 { hilbertIndex: { $gte: 26976, $lte: 27112 } },

 { hilbertIndex: { $in : [25417, 25419, 25425, 25430] } }

] },

 {date: { $gte: ISODate("2021-02-18T12:34:27.673Z") } },

 {date: { $lte: ISODate("2021-02-24T03:29:54.439Z") } },

 { location: { $geoWithin: { $geometry: { type : Polygon,

 coordinates: [[[23.8142, 38.0264], [23.9330, 38.0264],

[23.9330, 38.1251], [23.8142, 38.1251],

[23.8142, 38.0264]]]

 } } } }

] } }

])

Fig. 6: Example of spatio-temporal query that NODA sends
to MongoDB for execution.

When a spatio-temporal query is issued for query execution,
NODA computes the Hilbert values associated with the spatial
constraint of the query. Then, NODA embeds these in the
translated query to MongoDB as shown in Figure 6. Thus, the
hilbertIndex field participates in the query’s formation,
in addition to the temporal constraint and the respective

GeoJSON expression. In this way, the query is executed
on the shards that contain the respective index values and
date range. For the targeted shards, at first, the index is
accessed for efficient retrieval of the documents that fulfill
both the index values and the date condition. Then, in a
refinement phase, the fetched documents are examined on their
coordinates (GeoJSON objects), so as to exclude those that are
not enclosed in the query’s spatial constraint (false positives).
The remaining documents of every shard are returned to the
client.

C. NODA over a Wide-column Store

HBase is a popular wide-column store that follows the
design of BigTable [31], supporting tables with many columns,
records associated with keys, as well as efficient range scans
on keys. However, NoSQL stores such as HBase do not
provide inherent support for spatio-temporal data and relevant
operations. Thus, in order to implement the spatio-temporal
operations of NODA over HBase, we capitalize on its built-in
support for efficient range scans.

Our approach to data modelling consists of encoding the
spatio-temporal information in the row key of each record,
in the same spirit as [32] for multidimensional data. This
is achieved by obtaining the Geohash (https://en.wikipedia.
org/wiki/Geohash) of the spatial coordinates (x, y) and con-
catenation with the time t of the record in Unix timestamp
format, using the dash (-) as separator character, e.g., sw8zf-
1589354579100. Since row keys must be unique, we add a
randomly-generated string as suffix, in order to differentiate
keys corresponding to the same Geohash value and timestamp.
As a result, our row key has the following format: GEOHASH-
TIMESTAMP-RANDOMSTR. Also, we define a column family
“location” that consists of the columns with spatial and
temporal information.

Given a spatio-temporal range query, we need to retrieve
all rows with key starting with a specific prefix. This prefix
is formed by (a) computing of the most precise Geohash
value that encloses entirely the minimum bounding rectangle
(MBR) of the spatial part of the query, and (b) determining
the common prefix part of the starting and ending timestamps
of the temporal interval of the query. For example, a spatio-
temporal query referring to Northern Athens for the whole
month of February of 2019 would be converted to a search
for keys matching the expression (also called mask): swbb?-
158??????????-??????????, where wildcard characters are
used to match the unknown part of the row key.

At query time, the first step is to transform the spatio-
temporal query to the above expression. Then, this expression
is passed to a fuzzy row filter, which takes as input a mask
that matches row keys that have arbitrary characters at specific
positions. During the range scan, the fuzzy row filter performs
fast-forwards for locating the row keys that match the mask.
Obviously, the filter also retrieves false-positive query results.
Subsequently, a custom filter is applied on the fetched rows,
so as to perform refinement of the final result set. The custom
filter is applied to the columns of each row that store the longi-

https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash

tude, latitude and date values. In our work, we implemented 6
custom filters in HBase supporting spatial and spatio-temporal
filtering for rectangle, circle and polygon constraints. As a
technical detail, notice that we implemented both the fuzzy
row and the custom filters as server-side filters, hence their
execution is efficiently performed on the regionservers.

Row key

sw8zf-1612603920723-...

sw8zg-1602535253627-...

sw8zg-1612605869484-…

swbb4-1613278920178-…

…

longitude

23.6469

23.7034

23.7276

23.6848

…

latitude

37.9423

37.9489

37.9652

37.9872

…

date

161260…

160253…

161260…

161327…

…

column family: "location"

Spatio-temporal
range query

[(x1, y1, t1), (x2, y2, t2)]

sw8z?-161260???????-...

Fuzzy row filter

mask

Matched rows

Refinement phase

Fig. 7: Data modeling by NODA in wide-column store.

Figure 7 shows a spatio-temporal range query issued against
HBase. The spatio-temporal constraints are used to compute
the mask, which is subsequently used to filter records effi-
ciently, based on row key. The row keys that do not match the
mask are not accessed and are depicted with strikethrough text
in the figure, including the row key and column family. The
obtained matched rows undergo a refinement phase, where
the exact values kept in the “location” column family are
examined to exclude false positives. These are depicted with
strikethrough text only at the column family of the row.

D. NODA over a Key-value Store

Supporting spatio-temporal queries over key-value stores
is challenging due to the lack of range query support by
the underlying store [33]. Thus, encoding the spatio-temporal
information in the key is not feasible, as it would require
the conversion of a continuous interval (corresponding to the
spatio-temporal range) into an infinite number of discrete
values.

Therefore, in order to implement the spatio-temporal op-
erations of NODA over a key-value store (Redis), we opt
for the following design. Each spatio-temporal record (x, y,
t) is associated with a key-value pair. The key is a unique
identifier of the record and it is randomly generated. The
value field keeps the spatio-temporal information of a record.
In addition, to support efficient spatio-temporal retrieval, we
compute the Hilbert value h of each 3D spatio-temporal record
(x, y, t), and we generate a dummy key named location
whose value is a sorted set. The sorted set contains one entry
for each record in our data set, and each entry consists of
the record’s unique identifier and its Hilbert value. The set is
sorted by Hilbert value, effectively serving as an index, and
thus supporting efficient retrieval in logarithmic time. With
respect to additional, non-spatial fields of the data set, numeric
fields are stored using the above approach, whereas categorical
fields are stored using sets (instead of sorted sets).

Figure 8 illustrates the data modeling over the key-value
store. In the center, the key-value pairs are depicted which

Data objects:
(x1,y1,t1,a1,…) ID1

(x2,y2,t2,a2,…) ID2

…

(xn,yn,tn,an,…) IDn

Key Value

ID1 x1, y1, t1, a1, …

ID2 x2, y2, t2, a2, …

… …

IDn xn, yn, tn, an, …

Key Value

location (ID1,h1), (ID2,h2), …, (IDn,hn)

sorted by Hilbert value (hi)Spatio-temporal
range query

[(x1, y1, t1), (x2, y2, t2)]

Key-value store
Hilbert Indexes

HQ

Refinement phase

Retrieved
IDs

Fig. 8: Data modeling by NODA in key-value store.

correspond to the spatio-temporal data objects (values) and
random identifiers (keys). At the top, the object identifiers are
organized in a sorted set, ordered based on the Hilbert value
of the corresponding spatio-temporal data object.

When a spatio-temporal range query Q is issued, query
execution is performed in three steps. First, the spatio-temporal
constraint is transformed to a set HQ of Hilbert values, which
correspond to the 3D cells that intersect with the query.
Then, the sorted set is used in order to efficiently retrieve
the identifiers of data objects whose Hilbert value hi is in
HQ, i.e., hi ∈ HQ. Finally, we retrieve the objects based
on the identifiers, which is efficiently performed in constant
time. These objects undergo a refinement step, where false
positives are discarded. Notice that the proposed design is
generic and applicable over all modern key-value stores that
typically provide support for sorted sets as values.

V. EXPERIMENTAL EVALUATION

In this section, we provide the results of the experi-
mental study. Our code is available at: https://github.com/
nkoutroumanis/NoSQL-Operators.

A. Experimental Setup

Baselines. We compare the performance of NODA against
baseline solutions in the three NoSQL stores, denoted BSLM
for MongoDB, BSLH for HBase, and BSLR for Redis (de-
scribed in Sections V-B, V-C and V-D respectively). In brief,
BSLM uses a compound index over space and time for efficient
access, and partitions data to nodes based on time. Note that
MongoDB does not support spatial partitioning (sharding) at
the time of this writing. As HBase does not provide inherent
support for spatial data, the baseline BSLH performs table
scans without exploiting the row key, whereas in our approach
we inject the spatio-temporal information in the row key. In
the case of Redis, the baseline BSLR keeps two structures,
one for spatial data (GEO type, supported by Redis) and one
for temporal data, and merges the results of these queries.

Platform. Our experimental evaluation is performed in the
Okeanos-Knossos IaaS platform, which is a cloud service
supported by GRNET (https://grnet.gr) for research purposes,
offering virtual computing and storage services. We have
engaged 17 VMs running Ubuntu 16.04.6 LTS, 68 CPUs,

https://github.com/nkoutroumanis/NoSQL-Operators
https://github.com/nkoutroumanis/NoSQL-Operators
https://grnet.gr

 1

 10

 100

 1000

 10000

Q1 Q2 Q3 Q4

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Queries

BslSTM
BslTSM

NoDA

(a) Execution time (REAL)

 0

 2

 4

 6

 8

 10

 12

Q1 Q2 Q3 Q4

N
u

m
b

e
r

o
f

u
s
e

d
 n

o
d

e
s

Queries

BslM
NoDA

(b) Number of nodes (REAL)

 1

 10

 100

 1000

 10000

 100000

Q1 Q2 Q3 Q4

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Queries

 BslSTM
 BslTSM

 NoDA

(c) Execution time (SYNTH)

 0

 2

 4

 6

 8

 10

 12

Q1 Q2 Q3 Q4

N
u

m
b

e
r

o
f

u
s
e

d
 n

o
d

e
s

Queries

BslM
NoDA

(d) Number of nodes (SYNTH)

Fig. 9: Performance of queries on MongoDB using REAL data set: (a), (b), and SYNTH data set: (c), (d).

136GB RAM and 2.00TB disk space. For uniformity, in each
deployment, we use 12 nodes for data storage, 2 nodes as
clients for data loading, and 3 nodes for handling the metadata
(these 3 nodes are not used in the Redis cluster).

Data size (GB) in stores
Data MongoDB MongoDB HBase Redis Redis
set (Bsl*M)2 (NoDA) (BslR) (NoDA)

REAL 40.5 40.8 92.8 7.6 6.0
SYNTH 3.6 4.1 8.7 14.6 11.6

TABLE I: Size of the stored data in the NoSQL stores.

Data sets. We use both real-life data as well as synthetic
ones in our experiments. The real-life data set (REAL) is pro-
vided by a fleet management provider and consists of 15.2M
GPS positions of vehicles moving in the Greek mainland and
island territory for a period of five months (July to November
2018). Apart from the position in space and time, each record
also contains information about the referring vehicle, the
prevailing weather conditions, the road network and the nearest
points-of-interest (POIs). The overall information spans 75
columns. The synthetic data set (SYNTH) is generated in a
much smaller spatial area, covering approximately 1.54% of
the spatial extent of REAL. The temporal extent of SYNTH
is the half of REAL, i.e., 2.5 months, and contains twice
the records. For the performance evaluation in Redis with the
REAL set, only the values of 4 columns (spatio-temporal
information and vehicle identifier) are inserted to the store,
due to memory limitations.

Query generation. We generate spatio-temporal range
queries by fixing the temporal constraint and increasing the
spatial extent of the query, in order to study the effect of
query selectivity on performance. We have also performed
experiments varying the temporal extent of the query with sim-
ilar results. Q1 corresponds to the smaller spatial constraint,
whereas Q4 has the largest spatial constraint. In the case
of MongoDB and HBase we use rectangular range queries,
whereas we use circular range queries in the case of Redis.

Metrics. In the charts, we measure the execution time as
the average of 10 executions, in order to factor out the effect
of randomization. Also, we report the number of cluster nodes
that participate in query execution, which often relates to the
observed query execution time. In addition, when necessary,

2Bsl*M refers to the two baseline solutions in MongoDB case

we also report on the number of accessed objects on the
different nodes, which also affects the execution time.

B. Performance Evaluation in MongoDB

We evaluate the spatio-temporal extension of NODA against
a baseline solution (BSLM) that uses a compound index in
space and time. Notice that this is essentially the best practice
for handling spatio-temporal data in MongoDB as of now.
In fact, we evaluate two alternatives for the baseline; one that
prioritizes space over time (BSLSTM) in the compound index,
and the opposite (BSLTSM). For the baselines, the sharding
key is the date field, since MongoDB does not support
sharding based on a 2dsphere index. Regarding the available
indexes, these include a 2dsphere index on the location
field and an index on the date field, which is automatically
built by MongoDB since date is set as sharding key.

Figures 9(a) and (b) show the results obtained using REAL
for the different queries. Figure 9(a) shows the execution time
(notice the log-scale on the y-axis), while Figure 9(b) shows
the number of MongoDB nodes (out of 12) that participate
in the query execution. The results show that almost always
NODA outperforms both baseline approaches. There are two
reasons for this. First, NODA partitions the data based on
space and time, so a spatio-temporal query is processed by
more nodes in NODA (as shown in Figure 9(b)) that share
the processing load, whereas the query in BSLM targets fewer
nodes. Second, at local level, NODA typically examines fewer
documents on the nodes. The only exception is for the query
has high spatial selectivity (Q1), where the baseline approach
BSLSTM that prioritizes space is faster than NODA.

Figures 9(c) and (d) show the results obtained in the case of
SYNTH data. Again, the results are consistent with the case
of REAL data. NODA outperforms the baseline solutions in
all cases (except query Q1), often by more than one order
of magnitude. Notice that as the spatial extent of the query
increases (Q1–Q4), Figure 9(d) shows that NODA achieves
to use more nodes for query processing, in contrast to BSLM.

C. Performance Evaluation in HBase

For HBase (v 2.2.3), we use a baseline solution for com-
parative purposes, denoted BSLH, which performs table scans
without exploiting the row key for spatio-temporal querying.
Recall that differently than BSLH, NODA performs pruning
based on the row key, thus skipping irrelevant records.

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

Q1 Q2 Q3 Q4

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Queries

BslH
NoDA

(a) Execution time (REAL)

 1

 10

 100

 1000

 10000

 100000

 1x10
6

Q1 Q2 Q3 Q4

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Queries

BslH
NoDA

(b) Execution time (SYNTH)

Fig. 10: Performance of queries on HBase store.

Figure 10 shows the performance of NODA against BSLH
both for REAL and SYNTH. Almost in all cases, NODA
outperforms BSLH by a large margin. In general, for very
selective queries (such as Q1) NODA is more than two orders
of magnitude faster than BSLH. For queries that return more
results (e.g., Q2 and Q3), NODA still outperforms BSLH but
the gain is reduced, and eventually the performance of the
two approaches tends to converge for queries that return many
results (Q4). Notice that this is expected since it corresponds to
the case that a full table scan is often faster than index-based
access, when a large percentage of records are retrieved. In
the case of SYNTH and only for Q4, NODA is slower than
BSLH due to the high number of matched rows that need to
be examined in the refinement phase using the fuzzy filter.
The takeaway message is that the more selective the query,
the highest the performance gain of NODA in HBase. This
holds up to a certain point, i.e., for queries with selectivity
around 5% (such as Q4 on SYNTH).

D. Performance Evaluation in Redis

For the experiments in the Redis key-value store (v 6.0.8),
we compare NODA against a baseline solution (BSLR) that
handles two data structures (instead of one) on each node for
spatio-temporal querying.

The first structure stores the spatial information with the
identifier of each data object in a special (GEO) type of
sorted set. This type is offered natively by Redis for querying
spatial data, and it is based on geohashing. The other structure
is a sorted set that stores the timestamp with the identifier
of each data object. BSLR executes the spatial part and
the temporal part of the query separately, and performs set
intersection over the matched object identifiers to return the
result. Regarding partitioning, both NODA and BSLR use
round-robin partitioning. Every node maintains the sorted sets
for its locally stored data objects, which shares the load across
nodes and increases the efficiency of query execution.

Figures 11(a) and 11(b) show the comparative performance
of NODA against BSLR in terms of execution time for
the REAL and SYNTH data sets respectively. In both data
sets, for all queries, NODA consistently outperforms BSLR.
Also, the general trend is that for queries that retrieve more
results, this performance gain increases, reaching one order
of magnitude (for REAL) and two orders of magnitude (for
SYNTH). This is attributed to the modeling that NODA

 1

 10

 100

 1000

 10000

 100000

Q1 Q2 Q3 Q4

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Queries

BslR
NoDA

(a) Execution time (REAL)

 1

 10

 100

 1000

 10000

 100000

Q1 Q2 Q3 Q4

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Queries

BslR
NoDA

(b) Execution time (SYNTH)

Fig. 11: Performance of queries on Redis store.

adopts for spatio-temporal data. In particular, the sorted set
on the location field enables fast retrieval of the object
identifiers that are candidate results, which are then efficiently
accessed by key in order to perform the refinement.

In summary, in the case of the key-value store, NODA
achieves to boost the performance of spatio-temporal queries,
which cannot be processed efficiently due to the lack of range
query support by the store. This is a strong argument in favour
of our modeling technique, which enables efficient processing
of spatio-temporal queries over key-value stores.

REAL data set with scale factor
Size (GB) in stores REAL1 REAL2 REAL3 REAL4

HBase 92.8 190.4 387.19 583.95
Redis (BslR) 7.6 16.4 32.6 46.8

Redis (NoDA) 6.0 12.0 24.4 34.9
#documents (M) 15.2 31.4 63.9 96.4

TABLE II: Size (in GB) of the 4 instances of the REAL data
set for the 3 NoSQL stores.

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

REAL1REAL2REAL3REAL4

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Data scale factor

BslH
NoDA

(a) Results on HBase

 1

 10

 100

 1000

 10000

REAL1 REAL2 REAL3 REAL4

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Data scale factor

BslR
NoDA

(b) Results on Redis

Fig. 12: Scalabilty study on (a) HBase, and (b) Redis, using
the REAL data set.

E. Scalability Study

For our scalability study with increasing data set size, we
have obtained GPS traces of more vehicles from the data
provider, in the same spatio-temporal box. Thus, we use larger
instances of the REAL data set, up to 6x larger. Table II
reports the details of the 4 instances of the REAL data set
used in our experiments, denoted REAL1 – REAL4.

We report the results on HBase and Redis only, due to lack
of space (yet similar conclusions are drawn in the case of
MongoDB too). We gradually increase the size of the data to
assess its impact on performance of query execution, using

the same resources. We use query Q2 in this experiment, as a
middle case, and again we report the average of 10 executions.
Figure 12(a) depicts the results obtained for HBase. Clearly,
NODA sustains the performance gain for larger data sets over
BSLH. It is noteworthy that the gain (in absolute values)
increases for larger data sets, due to the log-scale used on y-
axis. The increased execution time shows a linear relationship
with the size of the data. Figure 12(b) shows the corresponding
results for Redis. In this case, the absolute gain of NODA over
BSLR increases more clearly for larger data sets.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented NODA, an abstraction layer
for NoSQL stores that allows unified access to heterogeneous
data models and storage systems. NODA abstracts access
to data stored in NoSQL stores, by providing a set of data
access operators (with clear semantics) that are implemented
for different NoSQL stores and capitalizes on them in order to
provide a declarative interface. NODA is optimized for spatial
and spatio-temporal data, which are prevalent in modern
applications. In our future work, we intend to extend NODA to
cover more types of spatio-temporal queries, different NoSQL
stores, as well as for supporting updates.

ACKNOWLEDGMENTS

This research work has received funding from the EU’s
Horizon 2020 research and innovation programme under grant
agreement No 780754 (Track&Know project), and from the
Hellenic Foundation for Research and Innovation (HFRI) and
the General Secretariat for Research and Innovation (GSRI),
under grant agreements No 1667 and No HFRI-FM17-81.

REFERENCES
[1] R. Cattell, “Scalable SQL and NoSQL data stores,” SIGMOD Rec.,

vol. 39, no. 4, pp. 12–27, 2010.
[2] A. Davoudian, L. Chen, and M. Liu, “A survey on NoSQL stores,” ACM

Comput. Surv., vol. 51, no. 2, pp. 40:1–40:43, 2018.
[3] C. Doulkeridis, A. Vlachou, N. Pelekis, and Y. Theodoridis, “A survey

on big data processing frameworks for mobility analytics,” SIGMOD
Rec., vol. 50, no. 2, pp. 18–29, 2021.

[4] N. Koutroumanis and C. Doulkeridis, “Scalable indexing and querying
of spatio-temporal data in nosql stores,” in Proc. of EDBT, 2021, pp.
611–622.

[5] N. Koutroumanis, P. Nikitopoulos, A. Vlachou, and C. Doulkeridis,
“NoDA: Unified NoSQL data access operators for mobility data,” in
Proc. of SSTD, 2019, pp. 174–177.

[6] N. Koutroumanis, N. Kousathanas, C. Doulkeridis, and A. Vlachou, “A
demonstration of NoDA: Unified access to NoSQL stores,” Proc. VLDB
Endow., vol. 14, no. 12, pp. 2851–2854, 2021.

[7] S. Li, S. Hu, R. K. Ganti, M. Srivatsa, and T. F. Abdelzaher, “Pyro: A
spatial-temporal big-data storage system,” in Proc. of USENIX, 2015,
pp. 97–109.

[8] J. K. Nidzwetzki and R. H. Güting, “Distributed SECONDO: A highly
available and scalable system for spatial data processing,” in Proc. of
SSTD, 2015, pp. 491–496.

[9] J. K. Nidzwetzki and R. H. Güting, “Distributed secondo: an extensible
and scalable database management system,” Distr. Paral. Datab., vol. 35,
no. 3-4, pp. 197–248, 2017.

[10] A. D. Fox, C. N. Eichelberger, J. N. Hughes, and S. Lyon, “Spatio-
temporal indexing in non-relational distributed databases,” in Proc. of
IEEE Big Data, 2013, pp. 291–299.

[11] J. Yu, Z. Zhang, and M. Sarwat, “Spatial data management in Apache
Spark: The GeoSpark perspective and beyond,” GeoInformatica, vol. 23,
no. 1, pp. 37–78, 2019.

[12] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref, “Loca-
tionSpark: A distributed in-memory data management system for big
spatial data,” Proc. VLDB Endow., vol. 9, no. 13, pp. 1565–1568, 2016.

[13] Z. Shang, G. Li, and Z. Bao, “DITA: distributed in-memory trajectory
analytics,” in Proc. of SIGMOD, 2018, pp. 725–740.

[14] A. Eldawy, V. Hristidis, S. Ghosh, M. Saeedan, A. Sevim, A. B.
Siddique, S. Singla, G. Sivaram, T. Vu, and Y. Zhang, “Beast: Scalable
exploratory analytics on spatio-temporal data,” in Proc. of CIKM, 2021,
pp. 3796–3807.

[15] D. F. Bacon, N. Bales, N. Bruno, B. F. Cooper, A. Dickinson, A. Fikes,
C. Fraser, A. Gubarev, M. Joshi, E. Kogan, A. Lloyd, S. Melnik, R. Rao,
D. Shue, C. Taylor, M. van der Holst, and D. Woodford, “Spanner:
Becoming a SQL system,” in Proc. of SIGMOD, 2017, pp. 331–343.

[16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,” in Proc. of SIGMOD,
J. T. Wang, Ed., 2008, pp. 1099–1110.

[17] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Anthony, H. Liu, and R. Murthy, “Hive - A petabyte scale data
warehouse using hadoop,” in Proc. of ICDE, 2010, pp. 996–1005.

[18] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
SQL: relational data processing in spark,” in Proc. of SIGMOD, 2015,
pp. 1383–1394.

[19] Y. Cao, W. Fan, and T. Yuan, “Block as a value for SQL over NoSQL,”
Proc. VLDB Endow., vol. 12, no. 10, pp. 1153–1166, 2019.

[20] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun,
N. Yegitbasi, H. Jin, E. Hwang, N. Shingte, and C. Berner, “Presto:
SQL on everything,” in Proc. of ICDE, 2019, pp. 1802–1813.

[21] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe,
J. Kepner, S. Madden, D. Maier, T. Mattson, and S. B. Zdonik, “The
BigDAWG polystore system,” SIGMOD Rec., vol. 44, no. 2, pp. 11–16,
2015.

[22] A. J. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, U. Çetintemel,
V. Gadepally, J. Heer, B. Howe, J. Kepner, T. Kraska, S. Madden,
D. Maier, T. G. Mattson, S. Papadopoulos, J. Parkhurst, N. Tatbul,
M. Vartak, and S. Zdonik, “A demonstration of the BigDAWG polystore
system,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1908–1911, 2015.

[23] M. Vogt, A. Stiemer, and H. Schuldt, “Icarus: Towards a multistore
database system,” in Proc. of IEEE BigData, 2017, pp. 2490–2499.

[24] B. Kolev, C. Bondiombouy, P. Valduriez, R. Jiménez-Peris, R. Pau, and
J. Pereira, “The CloudMdsQL multistore system,” in Proc. of SIGMOD,
2016, pp. 2113–2116.

[25] E. Kharlamov, T. P. Mailis, K. Bereta, D. Bilidas, S. Brandt, E. Jiménez-
Ruiz, S. Lamparter, C. Neuenstadt, Ö. L. Özçep, A. Soylu, C. Svingos,
G. Xiao, D. Zheleznyakov, D. Calvanese, I. Horrocks, M. Giese, Y. E.
Ioannidis, Y. Kotidis, R. Möller, and A. Waaler, “A semantic approach
to polystores,” in Proc. of IEEE BigData, 2016, pp. 2565–2573.

[26] B. Kolev et al., “CloudMdsQL: Querying heterogeneous cloud data
stores with a common language,” Distr. Paral. Datab., vol. 34, no. 4,
pp. 463–503, 2016.

[27] Z. Kaoudi and J. Quiané-Ruiz, “Cross-platform data processing: Use
cases and challenges,” in Proc. of ICDE, 2018, pp. 1723–1726.

[28] D. Agrawal, S. Chawla, B. Contreras-Rojas, A. K. Elmagarmid, Y. Idris,
Z. Kaoudi, S. Kruse, J. Lucas, E. Mansour, M. Ouzzani, P. Pa-
potti, J. Quiané-Ruiz, N. Tang, S. Thirumuruganathan, and A. Troudi,
“RHEEM: enabling cross-platform data processing - may the big data
be with you! -,” Proc. VLDB Endow., vol. 11, no. 11, pp. 1414–1427,
2018.

[29] R. A. Finkel and J. L. Bentley, “Quad Trees: A data structure for retrieval
on composite keys,” Acta Informatica, vol. 4, pp. 1–9, 1974.

[30] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of
the clustering properties of the Hilbert space-filling curve,” IEEE Trans.
Knowl. Data Eng., vol. 13, no. 1, pp. 124–141, 2001.

[31] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Trans. Comput. Syst., vol. 26,
no. 2, pp. 4:1–4:26, 2008.

[32] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi, “MD-HBase:
A scalable multi-dimensional data infrastructure for location aware
services,” in Proc. of MDM, 2011, pp. 7–16.

[33] M. Pilman, K. Bocksrocker, L. Braun, R. Marroquin, and D. Kossmann,
“Fast scans on key-value stores,” Proc. VLDB Endow., vol. 10, no. 11,
pp. 1526–1537, 2017.

	Introduction
	Related Work
	The NoDA Abstraction Layer
	Concept
	The Programming API
	Implementation Aspects
	Document-oriented Stores
	Wide-column Stores
	Key-values Stores

	The Declarative Interface

	Spatio-temporal Queries in NoDA
	Overview
	NoDA over a Document-oriented Database
	NoDA over a Wide-column Store
	NoDA over a Key-value Store

	Experimental Evaluation
	Experimental Setup
	Performance Evaluation in MongoDB
	Performance Evaluation in HBase
	Performance Evaluation in Redis
	Scalability Study

	Conclusions and Future Work

