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A B S T R A C T

Given a relation that contains main products and a set of relations corresponding to accessory products that can
be combined with a main product, the Exploratory Top-k Join query retrieves the k best combinations of main
and accessory products based on user preferences. As a result, the user is presented with a set of k combinations
of distinct main products, where a main product is combined with accessory products only if the combination
has a better score than the single main product. We model this problem as a rank-join problem, where each
combination is represented by a tuple from the main relation and a set of tuples from (some of) the accessory
relations. The nature of the problem is challenging because the inclusion of accessory products is not predefined
by the user, but instead all potential combinations (joins) are explored during query processing in order to
identify the highest scoring combinations. Existing approaches cannot be directly applied to this problem, as
they are designed for joining a predefined set of relations. In this paper, we present algorithms for processing
exploratory top-k joins that adopt the pull-bound framework for rank-join processing. We introduce a novel
algorithm (XRJN) which employs a more efficient bounding scheme and allows earlier termination of query
processing. We also provide theoretical guarantees on the performance of this algorithm, by proving that XRJN
is instance-optimal. In addition, we consider a pulling strategy that boosts the performance of query processing
even further. Finally, we conduct a detailed experimental study that demonstrates the efficiency of the proposed
algorithms in various setups.

1. Introduction

Nowadays, product databases contain large collections of objects,
where each object is characterized by a number of different properties
such as price or weight. In many cases, products can be combined with
accessories and form combinations with enhanced or extended proper-
ties, and in this way generating numerous options for the users. For
instance, a user wishing to buy a laptop might find a laptop combined
with some additional memory parts and an extra SSD disk more
suitable to her needs than any single laptop. However, quite often all
potential item combinations are not possible. Some laptops may
support the addition of a secondary internal disk while others not.
Another indicative example is that of a tourist visiting a city who seeks
a highly rated hotel with a restaurant. The tourist might also be
interested in highly rated hotels without restaurant that are close to a
restaurant. In this example, hotels should only be combined with
restaurants, if their distance is relatively short. The plethora of different
items and combinations make it challenging for users to explore the
available options and find the products that suit their needs.

Ranking queries, such as top-k [1–3] and rank-join queries [4–6],
assist users in finding products that are interesting to them by selecting
a small set of items or combinations that are highly ranked according to
their preferences. In such queries, products are typically modeled as
multi-dimensional points, where each dimension corresponds to a
specific attribute and the respective value indicates the presence or the
performance of a product regarding this attribute [7–9]. User prefer-
ences are modeled as multi-dimensional vectors w, where each
component (weight) of the vector denotes the importance of the
respective attribute for the ranking of the objects [10–12]. The weight
values could either be explicitly declared by the user through an
interactive user interface [10], or be indirectly estimated [13]. Each
item or combination is assigned a score, frequently using a linear
scoring function [11,14,15,16–18] of the form f o i o iw( ) = ∑ [ ] [ ]i

d
w =1 that

assigns scores to products, where o i[ ] is the normalized value of the i-th
attribute of a product o. However, both top-k and rank-join queries
present to the users a very limited overview of the available alter-
natives. Top-k queries, on one hand, focus solely on the products the
user is interested in, and ignore the fact that combinations can be
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better suited to users than single objects. Rank-join queries, on the
other hand, focus on fixed-size combinations and do not consider that
adding an accessory product does not necessarily result into a more
preferable combination, since some not-appealing attributes (e.g., price
or weight) may increase with the addition of certain accessories. In
addition, they often return similar combinations and thus they present
to the user a very limited view of the available products of her interest.

To this end, we propose a new type of query, the eXploratory Top-k
Join (XTJk) query, which aims at assisting the user to explore the
available options by providing her a wide range of the products she is
interested in, presented in attractive combinations. In particular, an
XTJk presents only one combination (the best) per main product,
focusing on the products that the user is interested in, while providing
possible combinations that may result to a more preferable solution.
Different from a rank-join query, where the user specifies the items to
be combined, the combination of main and accessory products is
performed automatically based on the user preferences. As a result, the
user is not required to be aware of the available accessories but she still
is presented with interesting combinations. In addition to providing a
wide overview of main products, an XTJk provides the ability to the
user to retrieve more combinations for a specific main product with
minimal processing cost, and organizes efficiently the results into
groups based on the product the user is interested in.

Consider the example of Fig. 1, which displays the database of an e-
shop selling computers, and a user wishing to buy a laptop. We can
assume that the user preference vector is equal to
w = (0.1, 0.2, 0.1, 0.3, 0.2, 0.1), where each vector dimension corre-
sponds to a dimension of a laptop item, i.e., w[1] corresponds to
CPU, w[2] to RAM, etc. The score of each laptop is equal to
f i o iw= ∑ [ ] [ ]i

d
w =1 , where o i[ ] is the normalized value of the i-th
attribute of product o. The join attributes “RAM type” and “SSD type”
represent the compatibility between main and accessory items. For
instance SSD type 1 represents a normal disk, while SSD type 2
represents an mSATA disk. SSD type 0 represents that no extension can
be added to the specific item.1 A top-3 query and rank-join query would
return the results shown in Fig. 2. Both queries do not return the
optimal results, as they do not take into account the fact that other
combinations may have better scores. Fig. 3 displays the ranking of all
possible combinations, and indicates that both queries do not return

the best results. In addition, a rank-join query displays two very similar
results, limiting the variety of the search results regarding the available
products that the user is interested in (laptops). Presenting a ranked
list of all possible combinations does help the user to acquire an insight
about the available products, as the top-3 combinations (Fig. 3) involve
only two laptops.

We argue that a user would be more interested in the combinations
presented by an XTJ3 query as displayed by the first table of Fig. 4.
Notice, that an XTJk query takes into account all possible combina-
tions, and presents to the user only the best combination for each main
product. Upon user request, more combinations for a given product can
be presented to the user, providing to her a wide, yet not overwhelming
view of the available options. Fig. 4 displays the case where a user
wishes to explore alternative combinations for computer c2. The
alternative combinations are organized according to the product of
interest of the user, assisting her to explore the available options.

State-of-the-art techniques for processing rank-join queries
[6,4,19] return the k highest ranked combinations according to a
user-defined preference function. However, the user must be aware of
the contents of the database and has to specify at query time the form
of combinations. Hence, adaptations of such techniques exhibit sub-
optimal performance when applied to our problem. Furthermore the
eXploratory Top-k Join is essentially a “star join” of the main product
relation and the additional product relations, and existing techniques
do not exploit the structure of this join type to achieve performance
gains. In this paper, we show how the structure of such queries can be
exploited in order to produce efficient query processing algorithms that
explore all possible joins, without computing the entire set of possible
combinations, and return the correct result.

Fig. 1. Sample product database.

Fig. 2. Top-k and rank-join query results. Fig. 3. Ranking of all possible combinations.

Fig. 4. Grouped results.

1 In the general case, the join condition between two items could be any condition that
is evaluated in query-time.
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To summarize, the contributions of this paper are the following:

• We propose the use of the pull-bound framework [20] for processing
eXploratory Top-k Joins, and we provide a baseline algorithm that
processes eXploratory Top-k Join (XTJk) queries, by adapting a
state-of-the-art rank-join algorithm [4].

• We analyze the properties of eXploratory Top-k Joins and we
propose an efficient algorithm (XRJN) that relies on an effective
bounding scheme and a plain round-robin pulling strategy.

• We provide strong theoretical guarantees on the performance of our
algorithm, namely we prove that XRJN is instance-optimal.

• We present a new algorithm (XRJN*), by introducing a pulling
strategy that prioritizes access to relations in a deliberate manner, in
order to reduce the overall processing cost.

• We extend the XTJk query in order to retrieve multiple combina-
tions (organized in groups) for each main product. Moreover, we
provide a generalized version of XRJN*, which supports a wide
range of scoring functions, and we prove that XRJN* preserves the
property of instance optimality.

• We perform an experimental evaluation that demonstrates the
efficiency of our approach.

The definition of the exploratory top-k join together with a basic
solution were originally introduced briefly in our previous work [21]. In
this paper, we extend our preliminary study substantially and we make
several new contributions. We propose a new exploration approach
based on XTJk queries, which presents initially to the users a wide
range of options and subsequently provides them with multiple
combinations of a single main product with minimal processing cost.
At a conceptual level, we show that our algorithms comply with the
pull-bound framework, and can be parameterized by an appropriate
bounding scheme and a pulling strategy. In particular, we propose a
novel pulling strategy that affects significantly the performance of
query processing. Furthermore, we provide theoretical guarantee on
the performance of our algorithms and analyze their complexity.
Finally, we conduct a thorough experimental study using both synthetic
and real data.

The rest of this paper is organized as follows: Section 2 reviews the
related work. In Section 3 we formally define the XTJk query.
Thereafter, in Section 4, we present a baseline technique to answer
an XTJk query. In Section 5, we provide a more efficient algorithm that
exploits the characteristics of the combinations in order to produce
faster converging upper and lower bounds. Section 6 describes the
generation of multiple combinations per main object, as well as the
generalization of the aggregation function. The experimental evaluation
is presented in Section 7 and we conclude in Section 8.

2. Related work

Our work is related to top-k and join queries as well as package
recommendation. In the following, we present an overview of the
related research work.

2.1. Top-k and Rank-join queries

Top-k queries have been well-studied in the last years to enable
ranked retrieval of objects based on user preferences. Top-k queries
where first studied by Fagin et al. [2]. Das et al. [1] introduced an
algorithm using views. Ge et al. [8] follow a similar approach using
precomputed views but their goal is to improve the performance on
batch top-k queries. Their approach shows a special interest as they
avoid linear programming for calculating the upper bound. For a
thorough overview of top-k queries we refer to [3].

Rank join queries were first studied by Natsev et al. who introduced
the J* algorithm [22]. Ilyas et al. proposed the HRJN* algorithm [4]
which outperforms J*. Mamoulis et al. [5] introduced the LARA-J and

LARA-J* algorithms which use lattices in order to store partial join
results. The performance of LARA-J* is better than HRJN* with respect
to access depth but the algorithm induces processing cost which is
higher than that of HRJN*. Finger and Polyzotis [6] and Schnaitter and
Polyzotis [20,19] study the problem of finding tight bounds for
terminating the rank-join algorithms. They also proposed the a-FRPA
algorithm, a hybrid approach between a tight bound and HRJN*, which
has improved performance over HRJN* in low data dimensionality. In
higher dimensionality the performance advantage is minimal and the
performance of the algorithm is on the same levels as HRJN*.
Martinenghi and Tagliasacchi [23] study the problem of joining results
produced by different sources on the Web for which the access cost
varies. They assume that both sorted and random access are available
and propose an algorithm for determining an efficient pulling strategy
at compile time which takes into account the access cost for each
source. Habich et al. [24] address the problem of increasing the overall
performance of multiple top-k queries over joins. Their main difference
is that while the previous approaches assume that the data are sorted
according to the preference queries they propose a strategy where they
avoid sorting the relations for each top-k query by using a global
sorting for merge-joins of the tuples or by using a variation of the hash-
join algorithm. Agrawal and Widom [25] discuss the subject of
confidence aware rank-join algorithms. Xie et al. [26] study the
problem of rank joins with aggregation constraints while in [27] Lu
et al. introduce the top-k,m queries. Given a set of groups where each
group contains a set of attributes, they study the problem of finding the
best combination of attributes. They focus on ranking combinations of
attributes and not combinations of objects. Zhang et al. [28] study the
problem of finding the best combinations of objects on a graph. Khalefa
et al. [29] optimize the performance of preference joins with the use of
pruning techniques. Jin et al. study the problem of multi-relational
skylines [30] and skylines over equi-joins [31], while Doulkeridis et al.
[32] study the problem of rank-join queries over distributed systems.

Our main difference with the aforementioned approaches is that we
do not assume that combinations should have a fixed number of
elements but combinations of any size can be eligible. In addition, we
examine a specific case of joins where all additional objects are
combined with a main object. This case of “star”-join has specific
characteristics which allow us to improve the performance of proces-
sing of such joins. Moreover, we are considering only the best
combination of each main object which enables us to offer a wider
view of the available main objects which are the objects the user is
primarily interested in.

2.2. Package retrieval and recommendation

Angel et al. [33] propose the class of “entity package finder” queries
and algorithms that process this query efficiently. Entities can be
hotels, cities or airlines, and the query aims to find top-scored
combinations of entities based on fixed associations. Entities are scored
based on associated documents and their relevance to query keywords.
Even if this difference to our work is set aside, their problem setting is
practically a join over ranked lists, not relations with multiple common
attributes whose values are aggregated.

Guo and Ishikawa [34] try to find packages that are not dominated
by other packages. Packages are defined as combinations of objects
coming from the same relation, and any two objects can form a
combination. Practically, this problem is quite different from our work,
as it does not deal with the problem of joining and ranking join tuples.

Our work is also related to package recommendation [35–38]. Xie
et al. [37] study the problem of creating the best package out of a set of
items given a specific budget. However, the objects are not related to
each other and the problem they address is to create the most attractive
package of objects for a user. Combinability of objects is not taken into
account and it is assumed that all combinations are possible.

Roy et al. [36] suggest a method of constructing combinations
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based on a central object and a set of satellite objects but they do not
take into account preference vectors. Their effort focuses on creating
and presenting a number of packages which maximizes the variety of
the contained satellite objects and satisfies at the same time a budget
constraint.

Amer-Yahia et al. [38] aim to retrieve combinations of items that
satisfy a budget constraint and they are complementary regarding an
attribute, i.e., they have different values for that attribute, but they are
similar regarding the rest attributes. In their work, they consider all
items to belong in one category, e.g., restaurants, and they rank the
combinations according to the similarity of the objects, which is totally
different than our approach that employs user preferences for ranking.
Also they do not study the case of efficient processing of joins, nor the
combination of ranking and joins.

Our main difference lies on the fact that the aforementioned
approaches aim at finding groups of objects that are attractive to users
and possibly satisfy certain constraints, such as budget constraints.
However, they do not take into consideration the item the user is
searching for and therefore the suggested accessory items may not be
relevant to the user query. Current approaches are focused on
suggesting accessory items that are likely to interest the user but are
not necessarily relevant to the properties the user is interested in. On
the contrary, we focus on the item that the user primarily focuses on,
and combine it with accessory items that enhance the properties that
are most important for the user. Finally, we do not assume that all
combinations are possible but we evaluate the join conditions as well.
None of the aforementioned approaches examine all these conditions
simultaneously.

3. Problem Definition

In this section we formally define the XTJk query and all necessary
structures used both for the problem definition and the description of
the respective algorithms. Table 1 summarizes the main symbols used
in this paper.

3.1. Object combinations

Let D be a database of objects and EM be a relation in D which is
connected to a set of relations E E= { , …, }n1 of D. EM has a set of d
real valued attributes A a a= { , …, }E d1M

and each relation Ei contains a
subset A A⊆E Ei M

of these attributes, i.e., it holds that
E A A∀ ∈ , ⋂ ≠ ∅i E Ei M

. Each object in a relation E E∈ ⋃{ }M is

represented as a d-dimensional point p ∈ d where p i[ ] ∈ if
a A∈i E and p i[ ] = 0 if a A∉i E . We refer to EM as the main relation
and to the rest of the relations as the additional relations. The objects
of the relations are called main and additional objects.

Using the main and the additional objects we can form combina-

tions where each combination has exactly one main object and at most
one object from each additional relation. We say that an object of the
main entity relation o E∈ M and a object p E∈ i of an additional relation
Ei are combinable if there is a join of the form o p E E⋈ ∈ ⋈M i.

Definition 1 (Combination). Given a main relation EM and a set of
relations we define as a combination a set of objects c such that:

• o c o E∃ ∈ : ∈ M , E c| ⋂ | = 1M ,

• p c p o∀ ∈ , ≠ it holds that E o p E E∃ : ⋈ ∈ ⋈i M i and

• p p c i j p E p E∀ , ∈ , ≠ , ∈ , ∈i j i i j j it holds that E E≠i j.
We use the notation m(c) to denote the main object of a combina-

tion c and C E( )M to denote the set of all possible combinations that can
be formed using EM as main relation. Note that a main object can
participate in many combinations, but each combination has only one
main object.

Using the example database in Fig. 1, if a user wishes to buy a
laptop and she is interested in CPU, RAM, SSD size and price, then the
main relation of her query is Laptops and the additional relations are
Memory and SSD. Any other attributes not specified in the query can
be considered irrelevant. The set of objects c m d{ , , }2 3 3 is a valid
combination, while c m{ , }1 1 is not since c1 and m1 are not combinable.
Fig. 3 shows some of the combinations in C(Laptops) which is the set of
all possible combinations with Laptops as the main relation.

3.2. Ranking combinations

We can now extend the notion of a top-k query in order to take into
account not only single objects but combinations as well. We therefore
define the Exploratory Top-k Join (XTJk) query which returns the top-
k combinations with distinct main objects. We consider a user query to
be a d-dimensional preference vector w targeted to relation EM and
each dimension iw[ ] of the query to represent the importance of the
respective attribute to the user. Without loss of generality we assume
that iw[ ] ≥ 0, iw∑ [ ] = 1i

d
=1 and if a user is not interested in a specific

attribute ai of the main objects then iw[ ] = 0. Given a preference vector
w targeted to the main relation EM , the score of a combination c is

defined as: f c j p jw( ) = ∑ [ ] ∑ ( [ ])j
d

p cw =1 ∈ .
An XTJk query lists the k main objects with the best combinations

and thus each main object can appear at most once in the query’s
result-set. The following definition formally defines the problem
addressed in this paper.

Definition 2 (XTJk query). Given a main relation EM , a set of
additional relations , a preference vector w and an integer k, the
result set XTJ w( )k of an Exploratory Top-k Join query is a set of
combinations such that:

● XTJ C Ew( ) ⊆ ( )k M and XTJ kw| ( )| =k ,
● c c XTJ w∀ , ∈ ( )k1 2 it holds that m c m c( ) ≠ ( )1 2 ,
● c XTJ c C E XTJw w∀ ∈ ( ), ∈ ( ) − ( )k M k1 2 one of the following necessarily

holds:

• f c f c( ) ≥ ( )w w1 2 or

• c XTJ m c m cw∃ ′ ∈ ( ): ( ′) = ( )k 2 and f c f c( ′) ≥ ( )w w 2 .
Returning to our example, Fig. 3 lists the ranked set C E( )M , while

the result of an XTJ2 query are the combinations c m{ , }2 3 and
c m d{ , , }4 1 2 . There is a combination c m d{ , , }2 3 3 which has a better score
than c m d{ , , }4 1 2 , but it is omitted since it shares the same main object
(c2) with the top-1 result.

3.3. Theoretical properties

In the following, we present some properties of the combinations
that helps us to reduce the search space of the XTJk query.

A combination that no other tuple can be added to and improve the
score of the combination is called total combination. A total combina-

Table 1
Table of symbols.

Symbol Explanation

EM The main relation

Ei An additional relation to EM
HE Set of accessed objects of relation E
o Object of EM
p Object of any relation EM or Ei
c A combination of objects
f p f c( ), ( )w w Score of an object p and combination c

m(c) The main object of a combination
cmp The most promising combination
C E( )M All possible combinations with EM as main relation

B E( )M All candidate combinations with EM as main relation

XTJ w( )k top-k candidate combinations

ALT(o) Set of alternative combinations for a main object o
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tion does not necessarily contain objects from every additional relation.
Given the fact that in the general case p ∈ d , the score of an additional
object could be negative and the addition of such an object to a
combination would make the score of the combination worse. In such
cases a total combination may not contain objects from all additional
relations. We should note that a main object may also have a negative
score, however, a combination should always contain a main object
even if its score is negative.

As mentioned before, each object of the main relation can partici-
pate in many combinations. However, for each main object we are
interested only in the combination with the best score, i.e., the
candidate combination.

Definition 3 (Candidate combination). Given a main object o of the
main relation EM , the candidate combination c is a combination such
that c c m c m c o∀ ′ ≠ : ( ′) = ( ) = it holds that f c f c( ) ≥ ( ′)w w .

We denote the set of all candidate combinations as B E( )M . Obviously
B E C E( ) ⊆ ( )M M . Returning to our example, Fig. 3 lists the set C E( )M ,
while the set of the candidate combinations B E( )M is indicated with a
star (*).

Lemma 1. A candidate combination is total.

Proof. By contradiction. Assume that the candidate combination c of
object o is not total. Then, there exists a combination c c′ ≠ , such that
m c m c o( ) = ( ′) = and it holds that , where p is an additional object, and
also f c f c( ′) > ( )w w . This contradicts with Definition 3.□

The opposite does not hold. There can be many total combinations
with the same main object and no other common object, but only one of
them can be candidate combination as well.

Lemma 2. It holds that XTJ B Ew( ) ⊆ ( )k M .
Lemma 2 is easy to be proven and it shows that it is sufficient to

examine only candidate combinations during the processing of a XTJk
query.

4. Pull-bound framework

In this paper, we propose a pull-bound framework for XTJk
queries. The pull-bound framework is based on the assumption that
access to the objects of each relation is provided in descending order of
score.2 The score of an object pi is equal to f p i p jw( ) = ∑ [ ] [ ]i j

d
iw =1 and it

is essentially the contribution to the total score of the combination it
belongs to. In other words, for any relation, if object p1 is accessed
before p2, this means that f p f p( ) ≥ ( )w w1 2 .

The general structure of the family of algorithms that comply with
this framework is shown in Algorithm 1. Their difference lies on (a) the
bounding technique that calculates the upper bound of the possible
score of any unseen combination, and (b) the pulling technique that
determines the next relation to access.

In the following, we first introduce our pull-bound framework for
processing XTJk queries. Then, we adapt an existing rank-join algo-
rithm, namely HRJN* [4], in order to be able to process exploratory
top-k joins.3 Since the calculated bounds play an important role on the
behavior of the pulling strategy, we are going to analyze the bounding
technique first. We employ the modified HRJN* algorithm (MHRJN) as
a baseline to compare the performance of our algorithms.

4.1. XTJk framework

Algorithm 1. Pull-bound framework.

Input: E ,M

Output: XTJ w( )k
1: B E( ) ← ∅M //Set of produced candidate combinations
2: while B E k| ( )| <M OR LB UB< do
3: E E← chooseRelation( ⋃{ })M

4: p E← . pullTuple()
5: ∪HE HE p← { } //add p to the accessed objects
6: B E HE HE t HE( ) ← update( , …, , …, )M M n1
7: LB B E← kBest( ( ))M

8: UB B E← upperBound( ( ))M

9: end while
10: return topK B E( ( ))M

As shown in Algorithm 1, the pull-bound framework consists of a
loop which is executed until k join results have been produced and no
unseen tuple can produce a join result with better score. In the first
step, the next relation to be accessed is selected (line 3) based on a
pulling strategy. Given a pulled tuple p from that relation, we update
the set of produced combinations (line 6). Finally, the lower bound is
set as the score of the k-th join result (line 7) and the upper bound of
any unseen join result is computed (line 8) based on the bounding
scheme.

Now, we focus on how the combinations are generated (line 6).
Since we are interested only in candidate combinations, the method
update() combines a newly pulled object with a combination only if
that is beneficial for the combination. The generated candidate
combinations are maintained as a set B E( )M that contains the best
seen combination for each main object. In detail, if the accessed tuple p
refers to a main object, the method update() finds the best additional
objects of the already accessed tuples which are combinable with p,
creates the combination and adds it to B E( )M . If tuple p refers to an
additional object, then we add this object to all combinations that the
tuple can be added to, i.e., to all combinations that p is combinable
with the main object of the combination and the addition of p results to
an improved score of the combination. In that way we ensure that
B E( )M contains only the best combination of each main object,
considering of course only the accessed tuples.

As a result, the set B E( )M is computed incrementally in Algorithm 1,
which means that in worst case where all objects of the relations are
accessed, then B E( )M will be equal to B E( )M . However, in practice, the
algorithm will halt much earlier, thus avoiding the cost of materializing
the set B E( )M .

4.2. Modified HRJN* algorithm

Bounding scheme: Our pull-bound framework evaluates a XTJk
query by estimating the upper bound of the score that any unseen tuple
can produce and terminates when the k-th best join result found is
better than the upper bound. Recall that the upper bound (UBMHRJN) of
the MHRJN algorithm is the maximum value produced if we combine
the worst seen tuple of any relation with the best seen tuples of the
remaining relations [4]. For the additional relations we include the best
tuples only if their score is positive and they can increase that way the
total score of the combination. We must include however the score of
the best tuple of the main relation since its presence in the results is
necessary. The bounding scheme of MHRJN is formally described in

∑UB f HE last u f HE= ( [ ]) + ( ( [1]))E M
E

w w
∈

M
(1)

∑UB f HE f HE last u f HE= ( [1]) + ( [ ]) + ( ( [1]))E M i
E
E E

w w w
∈
≠

i

i (2)

UB UB= max ( )
E E

EMHRJN
∈ ⋃{ }M (3)

2 Usually this is achieved by the use of multidimensional indexes or materialized views.
3 We henceforth use MHRJN to refer to the modified version of HRJN*.
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The notation HE denotes the set of accessed objects of relation E
and by HE HE last[1], [ ] we denote the first and last accessed tuples. The
function u(x) returns x if x > 0 and 0 if x ≤ 0. The complete algorithm
that calculates the bound is described in Algorithm 2.

Algorithm 2. MHRJN bound.

Input: E ,M

Output: UBMHRJN
1: UB, bound = − ∞
2: for all E E∈ ⋃{ }M do
3: if E E= M then
4: f HE last u f HEbound = ( [ ]) + ∑

′
( ( [1]))Ew w∈

5: else
6: ′′

f HE last f HE E
E E

u f HEbound = ( [ ]) + ( [1]) + ∑ ∈
≠

( ( [1]))Mw w w

7: end if
8: if bound UB> then
9: UB ← bound
10: E becomes the next relation to pull from
11: end if
12: end for
13: return UB

Theorem 1 (Correctness of bound). The modified version of HRJN*

provides a correct solution to the Exploratory top – k join problem.

Proof. We assume that MHRJN stops after having accessed d0 tuples
for EM and di tuples for each additional relation Ei. Let
c E j E j E j= { [ ], [ ], …, [ ]}k M n n0 1 1 be the k-best combination, i.e.,
LB f c= ( )kw and let the upper bound be UB UB E= ( )ζ , E E∈ { }⋃ζ M .
Since the algorithm has stopped then the condition of Inequality (4)
holds:

f c UB( ) ≥kw (4)

∑ ∑f E i f E d f E( [ ]) ≥ ( [ ]) + ( [1])
E i c

j j ζ ζ
E E

E E

jw w w
[ ]∈ ∈ ⋃

≠
j j k j M

j ζ (5)

Based on Eqs. (1)–(3) we conclude that Inequality 5 holds for any
relation E E∈ ⋃{ }ζ M . Let us assume that there is a non-total
combination c′ which if combined with an unseen tuple will become
better than ck. Consequently, after joining c′ with the unseen tuple it
will hold that f c f c( ′) > ( )w w k . Since c′ contains an unseen tuple, it
contains a tuple E d x[ + ]τ τ of a relation Eτ. The maximum score of c′ is
therefore given by either Eq. (1) if E E=τ M or in the opposite case, by
Eq. (2) where we consider the last tuple to be E d x[ + ]τ τ . We have
assumed that c′ is better than ck, therefore, if we substitute Eζ with Eτ
in Inequality 5 then we get that f E d x f E d( [ + ]) ≥ ( [ ])τ τ τ τw w which is not
true because we are accessing the objects in descending order of score.
This contradicts with the assumption that a non-total combination
combined with an unseen object may produce a top-k result. We reach
therefore the conclusion that no unseen object can produce a better
combination after the stopping criterion of MHRJN is satisfied.□

Pulling strategy: The set of bounds calculated by MHRJN in
Algorithm 2 is used to decide which is the next relation to pull from.
The intuition indicates that we should pull from the relation that
produced the highest bound since this relation plays an important role
in the upper bound of the algorithm. If we pull from the other relations,
the upper bound will not be reduced significantly and the algorithm
will not terminate fast. Therefore the decision on which is the next
relation to pull is taken in line 10 in Algorithm 2.

5. Exploratory rank-join (XRJN)

In this section, we propose the exploratory rank-join algorithm
(XRJN), which also follows the pull-bound framework. We propose a
tighter bounding scheme (Section 5.1) and prove its correctness

(Section 5.2), and we show that the bounding scheme of XRJN has
strong theoretical guarantees on its performance, namely that it is
instance-optimal (Section 5.3). In addition, we present a lazy method
to compute the bound more efficiently (Section 5.4), and we analyze the
complexity of the proposed algorithm (Section 5.5). Finally, we present
a pulling strategy that is beneficial for the proposed bounding scheme
(Section 5.6).

5.1. Bounding scheme

At a random state of the algorithm, let HE denote the objects of a
relation E that have been accessed so far, and B E( )M the set of all
combinations that have been created so far. Recall at this point that
only one combination per main object is created and that an additional
object is added to a combination only if this produces a better score for
the combination. There are two bounds we should consider, denoted as
UBEM

and UBcomb respectively, and our bounding scheme computes
their maximum:

UB max UB UB= ( , )XRJN E combM (6)

The first bound (UBEM
) determines the upper bound of any unseen

combination, i.e., any unseen object of the main relation EM . In the best
case, the next object of the main relation to be accessed will be
combined with the best objects of the additional relations except for
those that have a negative score. Obviously, the upper bound for any
unseen object of the main relation is the same with the upper bound
calculated by the baseline and its value is calculated by Eq. (1).

The second bound (UBcomb) represents the best score of a seen
main product combined with at least one unseen additional object. For
any seen main object, there exists exactly one combination in B E( )M ,
since any retrieved main object will be added to it as a combination
with a single main object if the main object cannot be combined with
any additional objects. A combination c in B E( )M is total based on the
seen tuples, if its score cannot be improved further. In other words, c is
total if for all relations Ei either (a) there exists p E∈i i such that p c∈i ,
or (b) Ei is exhausted (all tuples have been accessed) or HE last[ ]i is
negative. In the following, we refer to a combination c of B E( )M that is
not total as non-total combination and we refer as missing relation of c
all relations Ei for which (a) or (b) does not hold.

Let c be a non-total combination and Ei be a missing relation of c,
then c can be combined with an unseen object of Ei and therefore the
maximum contribution of Ei is equal to f HE last( [ ])iw . Thus, the upper
bound of the score for a non-total combination c can be computed be
adding for every missing relation Ei the score of the last accessed object
of Ei. We call most promising combination, the non-total combination
cmp which has the highest upper bound on its score. The upper bound
UBcomb of all seen main products is determined by the upper bound of
the score of the most promising combination.

Eq. (7) defines formally the most promising combination while Eq.
(8) calculates the respective upper bound4

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟∑c f c u f HE last= argmax ( ) + ( ( [ ]))mp
c B E

c not total
E

E missing relation

w w
∈ ( ) ∈M

(7)

∑UB f c u f HE last= ( ) + ( ( [ ]))comb mp
E

E missing relation

w w
∈

(8)

Example 1. Assume the objects shown in Table 2 where EM is the
main relation, E1, E2 are the additional relations, and we are looking
for the top-1 combination. The table shows the scores of the objects

4 We should note that this bound is the same for all additional relations, Therefore we
call it UBcomb because it depends on the current combinations and the last objects
accessed.
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according to a given vector w. The two signs (*,+) show two possible
combinations. We assume that we read the tuples in a round-robin
fashion. The id of each tuple is the row number and the relation letter it
belongs to (e.g., E E[1], [3]M 1 , etc.). After having read the first row, we
have one combination c E= { [1]}M1 and the upper bound UB is equal to
UB f E f E f E= ( [1]) + ( [1]) + ( [1]) = 22Mw w w1 2 . The lower bound is the best
score of any combination found so far which is the score of the main
object E [1]M , thus LB f E= ( [1]) = 10Mw .

When the second row is read, the combination c E= { [2]}M2 is
formed and the upper bound of any unseen combination involving any
unseen main object is still equal to UB = 22EM

. The most promising
combination is c E= { [1]}M1 and the upper bound of its score is equal to
UB f c f E f E= ( ) + ( [2]) + ( [2]) = 20comb w w w1 1 2 . At this point we are not
considering the tuples E E[1], [1]1 2 because if any of them were
combinable with E [1]M or E [2]M the combination would have been
formed. Of the two bounds we pick the maximum and therefore the
upper bound is equal to UB = 22.

Our algorithm continues by creating the combination c E= { [3]}M3
and then the combination c1 is updated and becomes equal to
c E E= { [1], [3])}M1 1 . After the third row is read, the most promising
combination is c1 and therefore the upper bounds are formed as
following:UB UB= 20, = 19E combM

. The lower bound LB is now equal to
LB = 16 due to the update of c1.

After the fourth row has been read then we have that UB = 19EM
.

The combinations created are c E E E= { [1], [3], [4]}M1 1 2 ,
c E c E= { [2]}, = { [3]}M M2 3 and c E E E= { [4], [1], [4]}M4 1 2 . The lower
bound is now equal to LB = 19. The most promising combination is
c2 since both c1 and c4 are total. The upper bound for the combinations
UBcomb is equal to UB = 18comb and therefore UB UB LB= =EM

and so
the algorithm stops.

According to the MHRJN bound, the upper bound at the fourth row
would be equal to UB f E f E f E= ( [1]) + ( [4]) + ( [1]) = 20E Mw w w1 21

and
therefore extra tuples would be read until E [7]1 and E [7]2 were accessed
where the upper bound would become equal toUB = 19. At this point it
is clear why the new bounding technique offers a tighter estimation of
the bound. First, the MHRJN bound technique is overestimating the
score of the unseen combinations because it uses uncombinable tuples,
and second, because it does not exclude main objects of total
combinations whose score cannot be improved.

Algorithm 3. Bounding scheme of XRJN.

Input: , B E( )M :set of all generated combinations.
Output: UBXRJN

1: UB f HE last u f HE← ( [ ]) + ∑ ( ( [1]))E M Ew w∈M

2: for all c B E∈ ( )M and c not total do
3: c UB c score. ← .
4: for all E ∈ missingRelations of c do
5: c UB c UB u f HE last max. ← . + ( ( [ ])) //w

possible score for each comb.
6: if UB c UB< .comb then

7: c c←mp

8: UB c UB← .comb

9: end if
10: end for
11: end for
12: return max UB UB( , )E combM

5.2. Algorithm and correctness

Algorithm 3 calculates the upper bound of the score for any unseen
combination. In line 1 we calculate UBEM

which is the upper bound of
any combination involving any unseen objects of the main relation.

In line 2 we evaluate the already created non-total combinations
which can be combined with any unseen tuples. For each non-total
combination c in B E( )M we calculate the upper bound of its score by
adding the score of the last seen tuples for all missing relations of c. The
combination with the highest upper bound of its score (c UB. ) is the
most promising combination (lines 2–11). UBcomb is equal to the score
of the most promising combination. The upper bound UB returned by
the algorithm is the maximum of these two bounds (line 12).

Theorem 2 (Correctness of bound). The XRJN algorithm provides a
correct solution to the XTJk query.

Proof. Let us assume that the algorithm has halted, after having
accessed d0 tuples for the relation EM and di tuples for each relation
E ∈i , therefore UB LB≤ . Let now c′ be an unseen combination for
which it holds that f c LB( ′) >w .

If the unseen combination c′ contains an unseen main object, then
the score of the combination will be at most equal to UBEM

, thus
f c UB( ′) ≤ Ew M

. Since UB UB LB≤ ≤EM
it holds that f c LB( ′) ≤w which

contradicts with the assumption f c LB( ′) >w . The contradiction that we
have reached is due to our assumption that c′ contains an unseen main
object and it is better than LB.

Alternatively, let us assume that unseen combination c′ contains an
already accessed main object, which means that there exists a non-total
combination c B E∈ ( )M that will be combined with at least one unseen
additional object and produce c′. In the following we assume that c has
been combined with an unseen object from only one relation Ej
producing combination c′. Similarly, we can prove the general case of
more than one relations. Let E d x[ + ]j j be the first combinable object
with c. Then the score of c′ when joined with the unseen tuple will be
equal to: f c f c f E d x f c f E d( ′) = ( ) + ( [ + ]) ≤ ( ) + ( [ ])j j j jw w w w w . From Eq. (8)
we conclude that f c UB UB LB( ′) ≤ ≤ ≤combw . However in the beginning
we assumed that f c LB( ′) >w and this is a contradiction. We conclude
that an unseen combination cannot have a greater score than the score
of the k-th combination in B E( )M , thus our algorithm returns always
the correct result set.□

5.3. Instance optimality

Instance optimality is defined by Fagin et al. [2] as follows. Given a
class of algorithms and a set of databases , an algorithm A ∈ is
instance-optimal if B∀ ∈ and D∀ ∈ it holds that

A D O cost B Dcost( , ) = ( ( , )). This means that there are constantsc1, c2
such that A D c B D ccost( , ) ≤ cost( , ) +1 2. Constant c1 is referred to as
optimality ratio.

Lemma 3. MHRJN is not instance optimal for the XTJk query.

Proof. Based on the definition of instance optimality it is sufficient to
show that the cost of MHRJN is not bounded for one instance database
D′ compared to an algorithm A. Thus, we construct a data set for which
the cost of MHRJN is not bounded compared to XRJN. Denoting the
database of Table 2 as D, we consider a database D′. Each relation EM ,
E1, and E2 of D′ has the same first 4 tuples as D. Thus, XRJN will return

Table 2
Example.

id EM E1 E2

1 10* 7+ 5
2 10 6 4
3 8 6* 3
4 7+ 5 3*,+

5 6 5 3
6 5 5 3
7 4 3 2
8 3 3 2
9 2 2 1
10 1 1 1
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the correct answer after accessing the first 4 tuples of each relation but
MHRJN does not terminate and will continue reading more tuples. Let
us assume that the relations of D′ contain more than 4 tuples such that
E i E[ ] = [4]M M , E i E[ ] = [4]1 1 , E i E[ ] = [4]2 2 for i > 4. MHRJN has to access
at least all tuples of relation E2 before terminating, while XRJN needs
to access only the first four rows. Since relation E2 can be arbitrarily
long the cost of MHRJN cannot be bounded and therefore MHRJN is
not instance optimal.□

Theorem 3. XRJN is instance optimal within algorithms following
the Pull-Bound Framework with optimality ratio n+1 where n is the
number of additional relations.

Proof. Let A be a random deterministic algorithm solving correctly the
XTJk query for a vectorw. The algorithm halts after having accessed d0
tuples for EM and di tuples for each additional relation Ei. We define ck
to be the k best candidate combination discovered by A with score
f c( )kw and dmax to be equal to d d= max ( )max i n i0≤ ≤ . We will show by
contradiction that XRJN will halt after accessing at most dmax tuples
from each relation.

Let us assume that XRJN has accessed dmax tuples from each
relation and has not halted. At this point XRJN has processed at least
all combinations evaluated by A and therefore it holds that
LB f c= ( )kwXRJN . Under the assumption that XRJN has not halted, there
are two cases to be examined.

The first case is that the upper bound of XRJN at that step is defined
by an unseen object of the EM i.e., UB UB= EXRJN M

and it holds that
LB UB<XRJN XRJN and since LB f c= ( )kwXRJN it also holds that
f c UB( ) <kw XRJN. As algorithm A is deterministic, it must halt at the
same step for all instances of relations that have the same seen tuples
HEM, HEi. We can construct relation EM such that HE d[ + 1]M 0 is
combinable with the first tuples of all additional relations HE [1]i and
f E d f E d( [ + 1]) = ( [ ])M Mw w0 0 . For the combination c′ defined by
HE d HE HE{ [ + 1], [1], …, [1]}M n0 1 it holds that f c UB( ′) =w XRJN, thus
f c f c( ) < ( ′)kw w . Therefore A has halted incorrectly, which leads us to a
contradiction.

In the second case it holds that UB UB= combXRJN and
LB UB<XRJN XRJN. Let cmp be the most promising combination found
by XRJN and o m c= ( )mp be the main object of cmp. An instance of our
database D can be constructed in way that E p c p E∀ : ∄ ∈ , ∈i i mp i i it
holds that f E d f E d( [ ]) = ( [ + 1])i max i maxw w and all E d[ + 1]i max tuples are
combinable with o. In this case, when d + 1max tuples has been read
from all relations a new combination c ′mp is produced by updating cmp

and adding the newly pulled tuples. It halts that f c UB( ′) =mpw XRJN and
therefore also f c f c( ) < ( )k mpw w . Thus, c ′mp belongs to the result set and A
has halted incorrectly, which leads us to a contradiction.

We conclude that XRJN will halt after accessing at most dmax

tuples from each relation. Thus, the cost of XRJN in terms of accessed
tuples is at most D n dcost(XRJN, ) = ( + 1)* max, while the cost of
algorithm A is A D dcost( , ) = ∑ i n i0≤ ≤ . We can derive that

D n A Dcost(XRJN, ) ≤ ( + 1)*cost( , ) since d d≤ ∑max i n i0≤ ≤ . Hence XRJN
is instance optimal with optimality ratio n+1.□

5.4. Lazy upper bound evaluation

The processing cost of the XRJN* upper bound is determined by the
size of the B E( )M set as it is necessary to search the entire set every time
we need to find the most promising combination. However, we can
reduce the overall cost of the calculation if we postpone the accurate
calculation of the upper bound until it is absolutely necessary. To
achieve that, we calculate the highest possible score of a combination
when the combination is updated and we update the most promising
combination if necessary. This approach does not take into considera-
tion the fact that when a tuple is read, it affects the maximum possible
score of possibly all non-total combinations and not only the updated
ones. As a result, it is possible that the most promising combination is a
combination which was not updated and therefore UBcomb and conse-

quently UBXRJN are underestimated. The solution to this problem is to
calculate the upper bound UBcomb without updating the most promis-
ing combination until UB LB≤XRJN . When the inequality holds,
Algorithm 3 is executed the upper bound is accurately calculated and
if it still holds that UB LB≤XRJN , XRJN* halts.

5.5. Cost and complexity analysis

Both algorithms described so far follow the pull and bound
paradigm presented in Algorithm 1. The I/O cost is mainly determined
by the depth each relation is accessed, therefore we expect XRJN to
access fewer objects than MHRJN because XRJN provides a better
estimation of the upper bound than MHRJN.

The processing cost of each repetition of the pull and bound
framework loop is determined by the cost of the lower and upper
bound calculations and the cost of updating the candidate combina-
tions. Each combination may contain only one object, therefore the cost
for updating the combinations is O(1) for MHRJN. The cost for
updating a combination for XRJN is O(| |) because the update of a
combination c is followed by a calculation of the maximum possible
score of c performed by the lazy evaluation. The top-k results are stored
in a priority queue. The cost of updating the queue is equal to O k(log )
while the cost of checking the first element of the queue is equal toO(1).
Each time a combination is updated it is necessary to verify that the
combination is not inserted twice in the queue. The check is performed
inO(1) time using a hash table on the elements of the queue. The cost of
the upper bound calculation for MHRJN is O(| |) as we have to
calculate | | + 1 upper bounds for each tuple update. The cost for
XRJN is in the best case equal toO(| |) which is the cost of updating the
upper bound for the most promising combination while in the worst
case the cost is equal to O B E(| ( )|)MXRJN which is the cost of identifying
the most promising combination when the lazy upper bound evaluation
produces an upper bound smaller than the lower bound and there is at
the same time a large number of non total combinations. The latter
however will rarely be the case because frequent updates will create fast
total combinations which can be ignored during the upper bound
evaluation while in case of infrequent updates the most promising
combination is unlikely to change.

The loop in the pull and bound framework is repeated at most
B E| + 1 ∥ ( )|M times for each algorithm. Therefore, the cost for

MHRJN is equal to O B E k(| ( )|(| | + log ))MMHRJN while for XRJN it is in
the best case equal O B E k( ( )|(| | + log ))MXRJN . In the worst case the cost
for XRJN is equal toO B E(| ( )| )MXRJN

2 as the dominating cost is that of the
upper bound calculation. The complexity analysis indicates that the
processing cost of both algorithms is highly affected by the size of the
combinations B E( )M created by each algorithm. XRJN is expected to
generate a significantly smaller number of combinations and therefore
we expect XRJN to be more efficient than MHRJN despite the fact that
each processing step of XRJN has a higher processing cost than that of
MHRJN.

In the following, we will introduce an improved pulling strategy
which will reduce the cost of upper bound calculation and ultimately
improve the performance of XRJN.

Algorithm 4. XRJN* pulling strategy.

Input: E ,M

Output: E E∈ ⋃ M : next relation to pull from
1: if UB UB>E combM

or c null=mp then

2: return EM //cmp=null: no non-total combinations
3: end if
4: R E← M

5: max ← − ∞
6: for all missing relations E of cmp do
7: u←# of non-total combinations not combined with E
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8: if u > max then
9: umax ←
10: R E relation with the highest of uncombined objects← // #
11: else if max=u then
12: if f HE last HR last( [ ]) > [ ]w then

13: R E← //in case of tie choose the relation with
the best last seen score

14: end if
15: end if
16: end for

5.6. The XRJN* pulling strategy

The objective of the pulling technique is twofold. The first goal is
the early convergence of the lower and upper bound in order to
minimize the access depth (number of accessed objects) for each
relation. The lower bound is increased by the formation of total
combinations and is stabilized as soon as the top-k combinations have
been formed. The algorithm however, will not halt as soon as the top-k
combinations are discovered, but when it is certain that no better
combinations can appear. This will be ensured by the decrease of the
upper bound. The upper bound is affected by the formation of total
combinations since the main objects that participate in total combina-
tions can be excluded from the calculation. The upper bound is also
affected by the scores of the last accessed objects. Therefore we should
aim at accessing first the relations that have high score according to the
user’s preferences.

The second goal of the pulling technique is to reduce the processing
cost of calculating the upper bound and updating the already formed
combinations. As mentioned before, the processing cost of both
procedures is determined by the number of non-total combinations
existing in each step of the algorithm. Therefore the goal of the pulling
technique should be to pull objects from the relations in such order that
the number of non total combinations is minimized.

Based on the above observations we propose the pulling strategy
described in Algorithm 4. We refer to this variation of XRJN as XRJN*.
If UB UB>E combM

the algorithm reads from the main relation while in
the opposite case it reads from an additional relation. In this way, the
upper and lower bound converge faster as on each step the highest
upper bound is reduced. If the algorithm chooses to read from an
additional relation, it examines only the additional relations which can
improve the score of the current most promising combination cmp, i.e.,
it examines only the missing relations of cmp. The algorithm selects the
additional relation with the highest number of uncombined non-total
combinations while ties are solved by choosing the relation with the
highest last seen score f HE last( [ ])w . By reading from a relation not
combined with cmp, it is ensured that the maximum score of cmp and
therefore UBcomb will be updated and therefore the upper and lower
bound will converge more. At the same time, the algorithm tries to
maximize the number of non-total combinations which will be updated.
Updating a large number of non-total combinations leads to the
formation of total combinations and the increase of the lower bound,
which forces the upper and lower bounds to converge.

6. Generalizing the XTJk query

In this section we discuss how our approach can be extended in
order to support more general variants of the ETOPk query. In
particular, we study two orthogonal generalizations: (a) providing
more combinations per main object, and (b) supporting different
(more general) aggregation functions. In the first case we study an
extended ETOPk query, where we offer the ability to the user to explore
more combinations for each of the top-k main objects organized into
groups. In the second case, we study how our framework can be

generalized to support a wide variety of aggregation functions, other
than plain sum, for calculating the score of a combination.

6.1. Providing more results

We extend the proposed XTJk query, in order to include multiple
combinations with the same main object in the retrieved result set. This
generalization is motivated by practical applications, where a user
would like to explore the set of best alternatives that contain a specific
main object, instead of being presented only with the highest scoring
alternative. Notice that presenting such alternatives of inferior score is
useful also for comparative purposes, so that the user can assess her
benefit, e.g., when choosing the best alternative compared to the
second best, etc. Essentially, the requirement is to relax the constraint
of presenting only one combination per main object, and instead
present groups of combinations for each main object.

To support this requirement, we propose to enrich each of the top-k
main objects o, with a group of m alternative combinations of o, where
m is a user-defined parameter. With respect to the query semantics, the
generalized XTJk query still returns exactly the same top-k combina-
tions; the difference is that for each main object of the top-k
combinations, the result additionally contains the top-m combinations
of that particular main object. Consequently, the size of the result set of
the generalized XTJk query is k m× .

More formally, we define the concept of alternative combinations
to facilitate the presentation of the generalized query.

Definition 4 (Alternative combinations). Given a main object o
of the main relation EM , the alternative combinations ALT(o) is a set of
the m combinations of o with the highest scores:

• ALT o m| ( )| = ,

• c c ALT o∀ , ∈ ( )1 2 it holds that m c m c o( ) = ( ) =1 2 ,

• c ALT o∀ ∉ ( ) with m c o( ) = it holds that: c ALT o∃ ∈ ( )i with m c o( ) =i
such that: f c f c( ) ≥ ( )iw w
We also refer to the score of ALT(o) as the score of the best

combination of o. Then, the formal definition of the generalized query,
denoted XTJk m, , is derived as the k sets ALT(o) with the highest score.

Algorithm 5. Update combination.

Input: Object o, Tuple t, E: relation of t
1: ALT′ ← ∅
2: if t is the first combinable tuple of E with o then
3: for all c ALT o∈ ( ) do
4: c c t′ ← ⋃{ }
5: ALT ALT c′ ← ′⋃{ ′}
6: end for
7: else
8: c TOP ALT o t E← replace( ( ( )), , )1 //replace the respective

tuple of c with t
9: if f c f TOP ALT o( ) > ( ( ( )))w w m then //if the new combi-

nation is the top-m alternatives
10: for all (c ALT o′ ∈ ( )) and (c E TOP ALT o E′⋂ = ( ( ))⋂ )1 do
11: replace c t EnewComb ← ( ′, , )
12: ALT ALT′ ← ′⋃{newComb}
13: end for
14: else
15: mark c as finished for relation E
16: end if
17: end if
18: ALT o TOP ALT o ALT( ) ← ( ( )⋃ ′)m

In order to be able to discover a group of m combinations for each
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main object of the result set, both the algorithm updating the
combinations and the stopping criterion of the algorithm need to be
modified. When a new main object is accessed, a new combination c is
created as well as a set of alternative combinations ALT(o) with c being
its only element. When a new additional tuple is accessed, the sets of
alternative combinations ALT(o) of all main objects that are combin-
able with t need to be updated.

Algorithm 5 describes the update procedure of the respective set of
ALT(o) when an additional tuple is added. We denote as TOP ALT o( ( ))i
the i-th combination sorted by their score. Given a main object o and a
new accessed tuple t of a relation E, if TOP ALT o( ( ))1 does not contain a
tuple from E, then t is combined with TOP ALT o( ( ))1 . If the result
produces a combination with higher score ( f t( ) > 0w ), then all combi-
nations in ALT(o) need to be updated (line 4) since t is the first
combinable tuple of E. Thus, the new tuple t is also used to generate a
set of new alternative combinations ALT(o) by adding t to all existing
alternative combinations. The new set of combinations ALT(o) consists
of the already existing and the newly generated combinations and only
the top-m elements are maintained.

In the opposite case, when c already contains a tuple from E, a
different approach is followed. First, we create a new combination by
replacing the tuple of TOP ALT o( ( ))1 that belongs to relation E with the
new tuple t. The score of this combination is an upper bound of the
score of any combination that contains t. If this score is smaller than
the score of the m-th already retrieved combination, then no combina-
tion that contains t can be added to ALT(o). In this case, ALT(o) is not
modified and also we do not need to access any more tuples of E as the
remaining tuples will create combinations with worse score. If a tuple
t E∈ does not create an alternative combination which belongs to the
TOP ALT o( ( ))m set, then no other tuple of E needs to be combined with c
and therefore we consider c to be finished for E. Otherwise, given a new
tuple t E∈ the algorithm creates new alternative combinations by
replacing the respective tuple of E in all combinations c′ of ALT(o) that
share the same tuple of E with TOP ALT o( ( ))1 (for which it holds that
c E c E⋂ = ′⋂ , i.e., the alternative combinations which contain the same
tuple of E as c does). When all updates have been made, only the top-m
combinations need to be kept.

Naturally, the stopping criterion in Algorithm 1 has to be altered. In
more detail, once the lower bound becomes higher than the upper
bound, the algorithm stops updating the bounds and accesses the
additional relations until the top-m alternative combinations for each
main object have been found. The pulling strategy is modified in order
to facilitate the creation of the alternative combinations after the k
objects with the highest score have been found. At each pulling step,
the algorithm chooses a random main object o which is not finished for
at least one additional relation and pulls a tuple from a random
additional relation for which o is not finished for. The main relation
does not need to be accessed any longer as the k best products have
already been found.

Theorem 4. Algorithm 5 provides a correct solution to the XTJk m,
query.

Proof. The group of alternative combinations is initialized with a
combination containing only one main object o. At this stage, the top-m
list is correct as there is only one combination in the set. We will denote
the top-m set of alternative combinations generated by Algorithm 5
after the nth update as ALT o( )n . We will show that if ALT o( )n is a
correct set of top-m combinations at update n, then ALT o( )n+1 is also a
correct top-m set. To prove that Algorithm 5 produces the correct result
at the n+1 update, it is sufficient to prove that given the set ALT o( )n ,
Algorithm 5 generates all combinations that can be in ALT o( )n+1 .

Let t be a new tuple of an additional relation E to be combined with
object o. The first case is that t is the first combinable tuple. Then
ALT o| ( )|n new alternative combinations containing the new tuple are
added to ALT o( )n+1 and top-m of both new and existing combinations
are selected. In this case all possible combinations were generated and

the ALT o( )n+1 correctly represents the set of the top-m alternative
combinations for object o.

The second case is that t is not the first accessed combinable tuple
of E with o. We denote with C o( )n all combinations with main object o
that have been examined up to update n (not only the ALT(o)
combinations). We can partition C o( )n into two partitions based on
the best so far combination of ALT(o), TOP ALT o( ( ))n

1 . Let t0 be equal to
t TOP ALT o E= ( ( ))⋂n
0 1 . Note that t0 may be the empty set. The first
partition of C o( )n , Π1, is the partition such that c Π∀ ∈ 1 it holds that
c E t⋂ = 0. The second partition Π2 is equal to C o Π( ) − 1, i.e., c Π∀ ∈ 2 it
holds that c E t⋂ ≠ 0. Obviously for any combination c in Π2 there is a
better combination c Π′ ∈ 1 such that c c c E t′ = − ( ⋂ )⋃{ }0 . Therefore, to
generate all new combinations based on tuple t we only need to
examine the combinations in Π1. At this point we have shown that
upon the n+1 update of the ALT(o) set, we need to examine only the
combinations in Π1. In the following we will show that it is necessary to
update only the combinations in ALT o Π( )⋂n

1.
Given two combinations in Π1, c ALT o Π∈ ( )⋂n

1 1 and
c Π ALT o∈ − ( )n

2 1 it holds that f c f c( ) ≥ ( )w w1 2 . Let c′i be the combina-
tions that result after the replacement of t0 with t. Then it holds that
f c f c f t f t( ′ ) = ( ) − ( ) + ( )i iw w w w0 . From the last equation we derive that
f c f c( ′ ) ≥ ( ′ )w w1 2 and therefore we conclude that any combination that

can be in ALT o( )n+1 will either be in ALT o( )n or it will be generated by
the update of a combination that belongs to the set ALT o Π( )⋂n

1.
Therefore Algorithm 5 produces the correct result.□

6.2. Generalizing the aggregation function

The scoring function that was introduced in the previous sections is
a special case of the more general scoring scheme

c j p jw( ) = ∑ [ ]aggr ( [ ])j
d

j p cw =1 ∈
, where aggrj p c∈

is an aggregation function

for all items in combination c over dimension j. The aggregation
function aggrj indicates the contribution of an accessory item to the
score of the combination it participates for dimension j. In the general
case, the contribution of each item in the score of the combination
depends on the each attribute and on the values of the rest of items for
that attribute. As an example, the addition of an extra memory module
to a laptop might result to the substitution of an existing module, thus
the total memory of the laptop will be less than the sum of the capacity
of the new and the existing modules. Similarly the price can be the total
price of the items or possibly a discount may apply.

In such situations the final score of a combination is unknown until
the combination is generated. However, the contribution of each
accessory item in the final score of a combination is in many cases
bounded by the attributes of the item. Therefore, the final score of the
combination is bounded by a bounding function that calculates the
maximum possible score of a combination. In the aforementioned
example, the total memory capacity cannot exceed the sum of the
capacity of the modules, and the price of each additional item, while the
discount may not exceed a certain percentage.

Definition 5. Bounding function: Given two d-dimensional functions
   f p f p( ): → , ( ): →d d we say that f is a bounding function for f

if p∀ ∈ d it holds that f p f p( ) ≤ ( ).
MHRJN and XRJN produce the correct results if the scoring function fw
is bounded by a function of the form f g p= ∑ ( )p c w

E
iw ∈i

i where p E∈i i

and gw
Ei is a monotonic function indicating the maximum possible

contribution in the score of a combination c for an item in relation in
Ei. The monotonicity of gw

Ei implies that for two objects p׳s for which it
holds that p j p j j d[ ] ≤ [ ], 1 ≤ ≤1 2 , the maximum contribution of p1 to
the score of a combination c cannot be larger than the maximum
contribution of p2. In other words, if the maximum contribution of a
main or accessory item to the score of a combination is bounded by a
function that depends only on the attributes of the item, then XRJN
produces the correct result. Typical aggregation functions that belong
in this category are among others, sum, max, min, and avg.
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Modified bounds: The generalized MHRJN and XRJN algorithms
access the main and accessory items in descending order of score, but
the score of each item is now calculated based using the scoring
functions gw

Ei. Both generalized algorithms employ the bounding

function fw to calculate the respective upper bounds. Eqs. (9)–(11)
define formally the generalized bounds for XRJN. The bounds for
MHRJN are modified accordingly:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑UB f HE last u g HE= ( [ ]) + ( [1])E M

E

E
w w

∈
M

(9)

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎞

⎠

⎟⎟⎟∑c f c u g HE last g c= argmax ( ) + ( ( [ ]) − ( )mp
c B E
c not total

E
E combinable relation

E E
w w w

∈ ( ) ∈M
(10)

∑UB f c u g HE last g c= ( ) + ( ( [ ]) − ( ))comb mp
E

E combinable relation

E
w w w

∈
(11)

Given a non-total combination c, a combinable relation Ei is a
relation such that (a) c E⋂ = ∅i or (b) c E p⋂ =i i and

g HE last g c( [ ]) > ( )E E
w w

i i where g c( )w
Ei is the actual contribution of pi in

combination c. As a result, given a combination c and an additional
relation Ei such that c E p⋂ =i 1 when a new combinable item p E∈ i2 is
accessed it is possible for p2 to replace p1.

Theorem 5. MHRJN and XRJN provides a correct solution to the
XTJk query for any scoring function bounded by a scoring function of
the form f g p= ∑ ( )p c w

E
iw ∈i

i where gw
Ei is monotonic for all i.

Proof. Let us assume that the algorithm has halted, after having
accessed d0 tuples for the relation EM and di tuples for each relation
E ∈i , therefore UB LB≤ . Let now c′ be an unseen combination for
which it holds that f c LB( ′) >w .

If the unseen combination c′ contains an unseen main object, then
the score of the combination will be at most equal to UBEM

, thus
f c UB( ′) ≤ Ew M

. Since UB UB LB≤ ≤EM
it holds that f c LB( ′) ≤w which

contradicts with the assumption f c LB( ′) >w . The contradiction that we
have reached is due to our assumption that c′ contains an unseen main
object and it is better than LB.

Alternatively, let us assume that unseen combination c′ contains an
already accessed main object, which means that there exists a non-total
combination c B E∈ ( )M that will be combined with at least one unseen
additional object and produce c′. In the following we assume that c has
been combined with an unseen object from only one relation Ej and c′ was
created. Similarly, we can prove the general case of more than one relation.
Let E d x[ + ]j j be the first combinable object with c. Then the maximum
possible score of c′ when joined with the unseen tuple will be equal to:
f c f c g E d x g c f c g E d g c( ′) = ( ) + ( [ + ]) − ( ) ≤ ( ) + ( [ ]) − ( )j j

E
j j

E
w w w w w w w

j j .

From Eq. (8) we conclude that f c UB UB LB( ′) ≤ ≤ ≤combw . However in the

beginning we assumed that f c LB( ′) >w and this is a contradiction. We
conclude that an unseen combination cannot have a greater score than the
score of the k-th combination in B E( )M , thus our algorithm always returns
the correct result set.□

Although both MHRJN and XRJN provide the correct solution,
MHRJN is not instance optimal as shown earlier. On the contrary,
XRJN is instance optimal even in the general case.

Theorem 6. XRJN is instance optimal for the generalized XTJk
query within algorithms following the Pull-Bound Framework with
optimality ratio n+1 where n is the number of additional relations.

Proof. Let A be a random deterministic algorithm solving correctly the
XTJk query for a vectorw. The algorithm halts after having accessed d0
tuples for EM and di tuples for each additional relation Ei. We define ck
to be the k best candidate combination discovered by A with score
f c( )kw and dmax to be equal to d d= max ( )max i n i0≤ ≤ . We will show by
contradiction that XRJN will halt after accessing at most dmax tuples
from each relation.

Let us assume that XRJN has accessed dmax tuples from each
relation and has not halted. At this point XRJN has processed at least
all combinations evaluated by A and therefore it holds that
LB f c= ( )kwXRJN . Under the assumption that XRJN has not halted, there
are two cases to be examined.

The first case is that the upper bound of XRJN at that step is defined
by an unseen object of the EM i.e., UB UB= EXRJN M

and it holds that
LB UB<XRJN XRJN and since LB f c= ( )kwXRJN it also holds that
f c UB( ) <kw XRJN. As algorithm A is deterministic, it must halt at the
same step for all instances of relations that have the same seen tuples
HEM, HEi. We can construct relation EM such that HE d[ + 1]M 0 is
combinable with the first tuples of all additional relations HE [1]i and
f E d f E d( [ + 1]) = ( [ ])M Mw w0 0 . For the combination c′ defined by

HE d HE HE{ [ + 1], [1], …, [1]}M n0 1 it holds that f c UB( ′) =w XRJN, thus

f c f c( ) < ( ′)kw w . Since the score of a combination can be evaluated only
after the objects have been accessed, there can be a combination c′ such
that f c f c( ′) > ( )kw w . Therefore A has halted incorrectly and we are lead
to a contradiction.

In the second case it holds that UB UB= combXRJN and
LB UB<XRJN XRJN. Let cmp be the most promising combination found
by XRJN and o m c= ( )mp be the main object of cmp. An instance of our
database D can be constructed in way that E∀ i such that Ei is
combinable for cmp, it holds that g E d g E d( [ ]) = ( [ + 1])i max i maxw w and
all E d[ + 1]i max tuples are combinable with o. In this case, when d + 1max
tuples have been read from all relations a new combination c ′mp is
produced by updating cmp and adding the newly pulled tuples. It holds
that f c UB( ′) =mpw XRJN and therefore also f c f c( ) < ( )k mpw w . Thus, c ′mp
may belong to the result and A has halted incorrectly, which leads us to
a contradiction.

We conclude that XRJN will halt after accessing at most dmax

tuples from each relation. Thus, the cost of XRJN in terms of accessed
tuples is at most D n dcost(XRJN, ) = ( + 1)* max, while the cost of
algorithm A is A D dcost( , ) = ∑ i n i0≤ ≤ . We can derive that

D n A Dcost(XRJN, ) ≤ ( + 1)*cost( , ) since d d≤ ∑max i n i0≤ ≤ . Hence XRJN
is instance optimal with optimality ratio n+1.□

7. Experimental evaluation

In this section, we present the results of the experimental evalua-
tion. All algorithms were implemented in Java and the experiments run
on an AMD Opteron 4130 Processor (2.60 GHz), with 32 GB of RAM
and 2 TB of disk.

Datasets and metrics: For the data set D, we used both synthetic
and real data collections. For the synthetic data we used one uniform
and one Zipfian distribution. In particular, for the uniform distribution
all object values for all relations and dimensions were generated
independently using a uniform distribution generator. Each additional
relation has a random subset of attributes of the main relation and
contains at least one positive and one negative attribute but in total it
contains no more than d−1 attributes where d is the number of
attributes of the main relation. The combinations of attributes of each
additional relation is unique. Each additional relation has also a joining
attribute which does not participate in the ranking of each object while
the main relation has | | joining attributes, one for each additional
relation. The values for the joining attributes are decided based on the
join selectivity value σ. For two relations L, R the join selectivity is
equal to σ L R L R= | ⋈ ∥ × |−1 [39]. If a joining attribute has σ−1 different
values, then the join contains σ σ L R σ L R| ∥ | = | ∥ |−1 2 tuples which gives
us a join selectivity of σ. All positive attributes of the main and the
additional relations were normalized in the interval [0, 10 000] while
the negative attributes of the main relation were normalized in the
interval [ − 10 000, 0]. The negative attributes of the additional rela-
tions were scaled to the size of the relation in order to make the cost of
an object proportional to the potential improvement of the main object.
In particular, for an additional relation Ei the negative attributes take
values in the interval A A[ − 10 000| ∥ | , 0]E E

−1
i M

where A| |Ei
is the
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number of attributes included in the relation. Although this might seem
counter-intuitive it is quite common for the attributes of accessory
objects to have a value range of positive attributes similar to the
respective attribute of the main object while their cost is lower. For
instance the capacity of hard disks as separate components has similar
range as the capacity of disks in laptops. The price of a hard disk
however, is lower than a laptop׳s price carrying a similar disk. Finally,
the size of each additional relation is equal to the size of the main
relation.

For the Zipfian distribution we used the generator provided by the
Apache Commons project5. The datasets were generated by giving as
parameters the maximum value of an attribute (1000) and the value of
the exponent characterizing the distribution. The positive and negative
attributes of all relations were generated similarly to the uniform
distribution.

In addition, we used the real datasets HOUSE (Household) and
NBA. HOUSE consists of 127 930 6-dimensional tuples, representing
the percentage of an American family׳s annual income spent on 6 types
of expenditure: gas, electricity, water, heating, insurance, and property
tax. NBA consists of 17 265 5-dimensional tuples, representing a
player׳s performance per year. The attributes are average values of:
number of points scored, rebounds, assists, steals and blocks. In both
relations all attributes were normalized in the interval [0, 10 000]. In
each experiment random attributes were considered as negative
attributes taking values in the interval [ − 10 000, 0]. Each additional
relation was created by selecting a random subset of the scoring
attributes of the main relation and copying the respective data.
Similarly to the uniform distribution the negative attributes were
scaled according to the size of each additional relation and each
additional relation has at least one positive and one negative attribute
and at most d−1 attributes in total, while each relation has a unique
subset of attributes.

The metrics under which we evaluated the implemented algorithms
were: (a) execution time required by each algorithm, and (b) total
tuples accessed (depth). We should stress that we do not focus our
performance analysis on the size of the data as the performance of the
algorithms depends mainly on the number of additional relations, the
join selectivity and the distribution of the values of the relations׳
attributes. We employed a best-case scenario regarding I/O accesses
where relations are sorted for each query, stored on the disk, and
accessed sequentially. This strategy minimizes the cost of the I/O
accesses and allows us to study the minimum performance difference of
the proposed algorithms. In practice, access to each relation will be
achieved through other means such as materialized views [8] or multi-
dimensional indexes [40], which will induce higher cost in terms of I/O
and increase the performance gap between MHRJN and XRJN.

Experimental procedure: We run a series of experiments varying
the parameters of a) the number of additional relations (| |) in the
interval [3–7], (b) dimensionality (d) in the interval [4–8], (c) number
of returned results (k) in the interval [5–100], (d) selectivity (σ)
[0.001–0.05], and (e) the number of negative attributes [1–3]. For
the Zipfian distribution we varied the value of the characteristic
exponent s in the interval [0.1–1.0]. Each experiment was run under
5 different dataset instances and 100 queries were used for evaluating
the performance of the algorithms.

The default setup for the experiments was: | | = 5, d=6,
E| | = 100 KM , k=10, σ=0.001 and each relation has one negative
attribute. The number of preference queries for each setting was equal
to W| | = 100. Both the dataset and the preferences set followed the
uniform distribution.

7.1. Pulling technique evaluation

The first series of experiments focuses on evaluating the pulling
technique described in Section 5 and here we compare XRJN against
XRJN*. XRJN uses round robin as pulling strategy while XRJN* uses
the pulling strategy described in Algorithm 4. Figs. 5 and 6 indicate
that XRJN* provides an advantage both in processing time and number
of accessed tuples. XRJN* pulling strategy forces the upper and lower
bound to converge faster, by prioritizing the update of the most-
promising combination and by aiming to reduce the highest upper
bound. The aggressive update of the most-promising combination
induces more frequent invocation of the exact upper bound calculation.
As a result, the processing-time gain is smaller than the access-depth
gain, fact that becomes more obvious as the number of additional
relations increases (Fig. 5).

7.2. Sensitivity analysis

In this section, we provide a detailed sensitivity analysis by varying
different parameters that influence the performance of our proposed
algorithms. We start by comparing the most important parameters, namely
the number of additional relations, the dimensionality of the relations, the
number of returned results and the join selectivity of the relations. In
addition we examine the performance of the algorithms on a Zipfian
distribution.

Varying | |: As we increase the number of additional relations, the
number of accessed tuples and the processing time of all approaches
increase. Fig. 7 indicates that XRJN* access consistently less objects than
MHRJN and XRJN and the performance of XRJN* is less affected by the
increase of the number of additional relations. Due to the improved
bounding technique XRJN* and XRJN access nearly an order of magnitude
less tuples than MHRJN. The performance of MHRJN is dependent both
on the convergence of the upper and lower bound and on the rate the
formed combinations become total. If there are many non total combina-
tions then for each accessed tuple there will be an increased processing cost
for finding the combinations that the tuple can be added to. On the other
hand, XRJN* aims at creating complete combinations fact that helps the
lower bound to increase fast and also reduces the updating cost.

Varying dimensionality: Similar conclusions can be drawn when we
vary the dimensionality. Fig. 8 indicates that XRJN and XRJN* are nearly
an order of magnitude more efficient than MHRJN with respect to time
and depth access.

Varying k: The same conclusions hold when we change the number of
returned results. Fig. 9 shows the performance of all algorithms. It is
noteworthy that the processing cost for MHRJN is increasing significantly
as k is increased. The processing cost for XRJN* also increases but with a
slower rate and in all cases it remains nearly an order of magnitude less
than MHRJN. The same applies for the access depth, where MHRJN
accesses more tuples as k increases. Except for the increased number of
accessed tuples, the increase of k causes more combinations to be created
and evaluated. MHRJN and XRJN create an arbitrary number of non-total
combinations which have to be maintained and updated when a new tuple
is accessed. XRJN* on the other hand minimizes the effect of the increased
number of non-total combinations through its pulling strategy and there-
fore is less affected by the increase of the result-set size.

Varying selectivity σ : As expected, join selectivity plays an important
role in the performance of both algorithms. As Fig. 10 indicates, when the
value of join selectivity increases the performance gap between the MHRJN
and XRJN* increases as well. The reason lies in the fact that XRJN exploits
the fact that total combinations are formed faster as selectivity increases by
considering only non total combinations in the upper bound calculation. In
addition, frequent combination updates allow XRJN* to reduce the cost of
upper bound calculation as the size of B E*( )MXRJN is small for high
selectivity values. In total, XRJN* benefits from higher selectivity values
in two ways; the upper bound of XRJN* converges to the lower bound
much faster than the upper bound of MHRJN and the cost of the upper5 http://commons.apache.org/proper/commons-math/
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bound calculation drops as selectivity rises.
Varying the number of negative attributes: Fig. 11 illustrates the

performance of all algorithms as we vary the number of negative attributes.
When the number of negative attributes increase, the number of tuples

which cannot improve a combination increase as well. Naturally, all
algorithms benefit from that fact. MHRJN is affected more than XRJN
and XRJN* because when an additional tuple with negative score is read,
the non accessed part of the relation can be safely discarded. The upper

Fig. 5. Pulling strategy evaluation: varying | |.

Fig. 6. Pulling strategy evaluation: varying d.

Fig. 7. Sensitivity analysis: varying | |.

Fig. 8. Sensitivity analysis: varying d.
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bound of XRJN allows both XRJN and XRJN* to terminate before the
tuples with negative score are accessed and therefore their performance is
not affected significantly by the number of negative attributes. They remain
however in all cases significantly more efficient than MHRJN.

Zipfian distribution: We evaluated our algorithms against a Zipfian
distribution as well. Fig. 12 illustrates the performance of the algorithm
against different values of the exponent characterizing the distribution. As
the value of the exponent increases, the performance of the all algorithms
remains relatively unaffected. In all cases the XRJN and XRJN* remain
almost an order of magnitude more efficient than MHRJN both in respect
of processing time and accessed tuples.

Real datasets: The results using the real datasets are in accordance with
the results of the synthetic ones. As the number of additional relations
increases, the performance gain in terms of accessed tuples increases as
well. Figs. 13(b) and 14(b) show that processing time and the number of
tuples accessed by MHRJN increases much faster than in the case of
XRJN*. XRJN* is up to 10 times more efficient for both HOUSE and NBA
datasets. We should note at this point that the default value of the join

selectivity parameter for the NBA dataset was set to σ=0.01 due to the small
size of the dataset.

Figs. 15 and 16 depict the behavior of the algorithms when varying
parameter k. Both XRJN and XRJN* are more efficient than MHRJN
regarding the access depth. It is noteworthy that XRJN* is not only more
efficient than MHRJN but also the performance of XRJN* is minimally
affected by the increase of parameter k. On the contrary Figs. 15(b) and
16(b) indicate that the cost of MHRJN increases linearly with respect to k.

Figs. 17 and 18 illustrate the performance of the algorithms when
varying the join selectivity σ. All algorithms behave as expected based on
the evaluation of the uniform distribution. It is worth noting that the
performance of XRJN* improves much faster than MHRJN both in terms
of processing time and in terms of access depth. Similarly to the case of the
uniform distribution sets the XRJN* forces the upper and lower bound to
converge faster than MHRJN as it aims towards creating total combina-
tions fast, fact that helps the lower and upper to converge.

Figs. 19 and 20 illustrate the performance of the algorithms when
varying the number of negative attributes. The performance of the

Fig. 9. Sensitivity analysis: varying k.

Fig. 10. Sensitivity analysis: varying σ (log scale).

Fig. 11. Sensitivity analysis: varying # of negative attributes.
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Fig. 12. Sensitivity analysis: Zipfian distribution.

Fig. 13. NBA: varying | |

Fig. 14. HOUSE: varying | |.

Fig. 15. NBA: varying k.
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Fig. 16. HOUSE: varying k.

Fig. 17. NBA: varying σ (log scale).

Fig. 18. HOUSE: varying σ (log scale).

Fig. 19. NBA: varying # of negative attributes.
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algorithms varies due to the random selection of the negative attributes
in each run of the experiments. Nevertheless, XRJN and XRJN*

perform in all cases significantly better than MHRJN. Especially in
the case of the HOUSE dataset both XRJN and XRJN* are nearly an
order of magnitude more efficient than MHRJN.

Alternative combinations generation: We tested both algorithms
using the default experimental setup. Fig. 21 illustrates the perfor-
mance of the two algorithms when a set ofm combinations is presented
for each main product. As expected the processing cost rises as the
number of combinations per main object increases. Interestingly, while
the access depth increases for XRJN*, it remains stable for MHRJN. As
MHRJN accesses 4 times more tuples than XRJN* to discover the best
combination for each main object, it has already accessed enough
tuples to form the alternative combinations before the lower bound
exceeds the upper bound. Therefore, the only extra cost for MHRJN is
that of calculating the top-m alternative combinations. In contrast,
XRJN* utilizes a more efficient bounding scheme which allows the
algorithm to identify the best combination for each main object after
accessing a much smaller number of tuples than MHRJN.
Consequently, XRJN* needs to continue reading from the relations
after the lower bound has exceeded the upper bound in order to form
the top-m combinations. As a result, the access-depth for XRJN* rises
as the number of alternative combinations increases. In all cases
however, it remains up to 4 times more efficient in terms of access-
depth and up to 3 times more efficient in terms of processing time than
MHRJN.

8. Conclusion

In this paper, we address the problem of discovering the top-k

combinations between a single main product relation and several
additional relations that can be joined with the former one. Our
approach tries to balance between finding the best combinations and
giving the user the ability to explore the products of the database and
the possible combinations between them, without the need to specify
which relations will be joined to the main relation. To this end, we
define the Exploratory Top-k Join query and we present a pull-bound
framework for query processing. We propose a bounding scheme that
exploits the properties of the formed combinations in order to
efficiently calculate the result. The resulting algorithm has strong
theoretical guarantees, namely it is instance-optimal. We also propose
a more effective pulling strategy than plain round-robin, which further
boosts the performance of query processing. In our experimental
evaluation, we show that our algorithms perform consistently better
than an adaptation of a state-of-the-art rank-join algorithm.
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