
TPLP 19 (5–6): 841–856, 2019. c© Cambridge University Press 2019

doi:10.1017/S147106841900022X

841

Online Event Recognition from Moving Vehicles:
Application Paper

EFTHIMIS TSILIONIS
National Center for Scientific Research ‘Demokritos’, Athens, Greece,

(e-mail: eftsilio@iit.demokritos.gr)

NIKOLAOS KOUTROUMANIS, PANAGIOTIS NIKITOPOULOS and
CHRISTOS DOULKERIDIS

University of Piraeus, Piraeus, Greece,
(e-mail: {koutroumanis,nikp,cdoulk,}@unipi.gr)

ALEXANDER ARTIKIS
National Center for Scientific Research ‘Demokritos’, Athens, Greece, and University of Piraeus,

Piraeus, Greece,
(e-mail: a.artikis@unipi.gr)

submitted 25 July 2019; accepted 31 July 2019

Abstract

We present a system for online composite event recognition over streaming positions of com-
mercial vehicles. Our system employs a data enrichment module, augmenting the mobility data
with external information, such as weather data and proximity to points of interest. In addition,
the composite event recognition module, based on a highly optimised logic programming imple-
mentation of the Event Calculus, consumes the enriched data and identifies activities that are
beneficial in fleet management applications. We evaluate our system on large, real-world data
from commercial vehicles, and illustrate its efficiency.

KEYWORDS: Event Pattern Matching, Event Calculus, Data Enrichment

1 Introduction

The European economy relies to a great extent on commercial vehicle fleets. Accord-

ing to the European Automobile Manufacturers Association1, there were over 54 Million

commercial vehicles in use in Europe in 2015, and this number is growing every year.

Commercial vehicles are equipped with devices emitting information regarding their loca-

tion and operational status, such as speed and fuel level. Fleet management applications

collect the information emitted from moving vehicles in order to improve the management

and planning of transportation services, and enable informed decision-making. Detecting

composite events from such data streams can be beneficial for the drivers of commercial

vehicles, since they can be informed about their performance, and even prevent danger-

ous situations. Additionally, the analysis of data generated by such a fleet of vehicles,

can help the owners maximize the performance of the fleet.

1 http://www.acea.be/statistics/article/vehicles-in-use-europe-2017

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://doi.org/10.1017/S147106841900022X
https://orcid.org/0000-0002-2189-976X
mailto:eftsilio@iit.demokritos.gr
mailto:{koutroumanis,nikp,cdoulk,}@unipi.gr
mailto:a.artikis@unipi.gr
http://www.acea.be/statistics/article/vehicles-in-use-europe-2017
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

842 E. Tsilionis et al.

However, the data produced by a fleet of vehicles is not always sufficient on its own to

support advanced vehicle monitoring. External data sources, such as weather information

or proximity to points of interest (POIs), can have a significant effect on the movement

of the vehicles. For example, fleet management applications can estimate better the fuel

consumption of the fleet, by taking into consideration weather information. Furthermore,

informing about the presence of locations of interest in a close distance, such as gas sta-

tions, can be a significant help both for drivers and fleet operators. Therefore, the integra-

tion of positional information with external data sources allows for improved monitoring.

In the context of the Track & Know project2, we develop an online fleet management

system for the recognition of composite events, that improves the operating efficiency of

a commercial fleet. Our system utilizes the GPS (Global Positioning System) traces of

moving vehicles along with information emitted by an installed accelerometer device, such

as an abrupt acceleration, and information concerning the level of fuel in a vehicle’s tank

provided by a fuel sensor. These traces are enriched with weather and POI information by

a dedicated component for data enrichment. The enriched data are provided as input to

a composite event recognition (CER) component, which is based on the ‘Event Calculus

for Run-Time Reasoning’ (RTEC). This is a logic programming implementation of the

Event Calculus (Kowalski and Sergot 1986) with optimizations for continuous narrative

assimilation on data streams (Artikis et al. 2015; Tsilionis et al. 2019). The contributions

of this paper are then the following:

• We provide a high-throughput and scalable solution for the enrichment of mobility

data with weather information and nearby POIs.

• We present a stream reasoning system integrating the component for data enrich-

ment and a logic programming component for recognizing composite events.

• We illustrate our approach using large, real-world, heterogeneous data streams con-

cerning commercial vehicles. The evaluation validates the robustness and scalability

of the system as well as its capacity to operate in real-time.

The remainder of this paper is organized as follows. Section 2 discusses related work,

while Sections 3 and 4 present the main system components. Section 5 presents our

empirical evaluation. Finally, Section 6 discusses the challenges that we faced during the

system development.

2 Related Work

Data enrichment is considered as part of a larger process known as data integration,

which is a challenging topic, in particular in the context of data sources that pro-

vide large volumes of data, often in streaming mode, and in heterogeneous formats

(Dong and Srivastava 2015). Unfortunately, despite the significance of integrating mobil-

ity data with weather, there is a lack of publicly available and reusable systems or tools;

our work on weather data integration (Koutroumanis et al. 2019) aims to address this

limitation. Regarding the enrichment of GPS traces with static locations, also known as

points of interest, the problem is essentially known as distance join, a variant of spatial

joins (Jacox and Samet 2007), where records from two data sets are joined if their dis-

tance is below a user-specified threshold. Parallel processing of distance join is typically

2 https://trackandknowproject.eu/

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://trackandknowproject.eu/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

Online Event Recognition from Moving Vehicles: Application Paper 843

performed in two ways: (a) by repartitioning both data sets to processors in a way that

guarantees the correctness of the result, when partitions are processed independently, or

(b) by partitioning one data set and broadcast the other to all processors. The latter

technique is usually preferred when one of the data sets is relatively small, and we adopt

this method here.

Composite event recognition (CER) systems accept as input a stream of time-

stamped, ‘simple, derived events’, such as events coming from sensors of moving vehi-

cles, and identify composite events (CE)s of interest — collections of events that satisfy

some pattern. The definition of a CE imposes temporal and, possibly, atemporal con-

straints on its sub-events (simple, derived events or other CEs). Numerous CER systems

and languages have been proposed in the literature. See (Cugola and Margara 2012;

Alevizos et al. 2017; Giatrakos et al. 2019) for three surveys. These systems have a com-

mon goal, but differ in their architectures, data models, pattern languages and processing

mechanisms (Grez et al. 2019). For example, many CER systems provide users with a

pattern language that is later compiled into some form of automaton (Demers et al. 2007;

Zhang et al. 2014; Schultz-Møller et al. 2009; Apache FlinkCEP3). The automaton model

is used to provide the semantics of the language and/or as an execution framework for

pattern matching. Apart from automata, some CER systems employ tree-based models

(Liu et al. 2011; Mei and Madden 2009). Again, tree-based formalisms are used for both

modeling and recognition, i.e., they may describe the event patterns and the applied

recognition algorithm.

Logic-based approaches to CER have also been attracting considerable attention, since

they exhibit a formal, declarative semantics, and at the same time support efficient

reasoning (Dousson and Maigat 2007; Cugola and Margara 2010; Paschke and Bichler

2008). We adopt the ‘Event Calculus for Run-Time reasoning’ (RTEC) for our CER

engine (Artikis et al. 2015), a logic programming implementation of the Event Calcu-

lus (Kowalski and Sergot 1986), that has been used in various application domains,

such as maritime monitoring (Patroumpas et al. 2017). CE patterns in RTEC are (lo-

cally) stratified logic programs. RTEC explicitly represents CE intervals (unlike e.g.

Dousson and Maigat 2007; Cugola and Margara 2010; Beck et al. 2018) and thus avoids

the related logical problems (Paschke 2006). Moreover, and in contrast to state-of-the-art

recognition systems, such as the Esper4 engine and SASE (Zhang et al. 2014), RTEC

can naturally express hierarchical knowledge by means of well-structured specifications,

and consequently employ caching techniques to avoid unnecessary re-computations.

Concerning the Event Calculus literature, a key feature of RTEC is that it includes a

windowing technique. No other Event Calculus system (including Chittaro and Montanari

1996; Cervesato and Montanari 2000; Miller and Shanahan 2002; Paschke and Bichler

2008; Artikis and Sergot 2010; Montali et al. 2013) ‘forgets’ or represents concisely the

data stream history.

3 Data Enrichment

The architecture of our system for online fleet management is depicted in Figure 1. The

main input is streaming GPS traces from a fleet of moving vehicles, typically provided by

3 https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
4 http://www.espertech.com/esper/

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
http://www.espertech.com/esper/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

844 E. Tsilionis et al.

Fig. 1: The system architecture for online event recognition from moving vehicles.

a fleet management application. As this streaming data flows in the system, it is enriched

with external information, mainly weather data and proximity to points of interest. The

enrichment process augments the GPS traces with valuable information, which can be

exploited for identifying patterns of composite events (CEs) that would otherwise remain

hidden. Subsequently, a CER module consumes the stream of enriched GPS positions to

identify CEs. Moreover, the system architecture is implemented on top of scalable big

data frameworks (e.g., Kafka, Spark), thereby exploiting parallelism for data operations

either at the level of a cluster of computers or at the level of a single computer (by means

of multi-threading).

In the context of this work, data enrichment consists of two modules: weather data

enrichment and point of interest (POI) enrichment. The input is GPS traces from a

set of moving vehicles, which contain vehicle id (v.id), position v.loc = (v.x, v.y) and

timestamp (v.t), as well as other attributes (e.g., speed, acceleration, etc.). The output

contains the same set of records, enriched with additional attributes. First, a set of

weather attributes, selected according to needs of the application5. Essentially, for each

position v.loc = (v.x, v.y) and timestamp (v.t) of a vehicle, we retrieve the values of

weather attributes. Second, each position (v.x, v.y) is enriched with a set of POIs {pi}
that are located within a user-specified distance threshold θ, i.e., d(v.loc, pi) ≤ θ.

3.1 Weather Enrichment

The weather enrichment module operates in an online manner, by processing the GPS

traces record-by-record, as they arrive in the stream. Internally, its logic is split in two

sub-modules; the Spatio-temporal parser, which is responsible for extracting the position

(v.loc) and timestamp (v.t) from the input record, and the Weather data obtainer, which

is responsible for the retrieval of weather attribute values associated with the specific

spatio-temporal position (v.loc, v.t).

The Spatio-temporal parser, parses each record of the input data and performs some

basic data cleaning operations. It checks the spatio-temporal part both for its existence

(null or empty values) and validity (valid longitude and latitude values). Both checks

are necessary, as GPS traces are typically noisy and may contain errors. If a value is not

valid or missing, then the parser ignores the entire record, and continues with the next

5 In this paper, we are mostly interested in events and their relationship to ice-related attributes.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

Online Event Recognition from Moving Vehicles: Application Paper 845

(a) (b)

Fig. 2: POI Enrichment.

one. Each record with valid spatial and temporal information is passed to the Weather

data obtainer sub-module, which is responsible of fetching the weather attribute values

from the weather data source.

Weather data is provided as GRIB-formatted files that store gridded meteorologi-

cal data in binary form. GRIB files are provided by the National Oceanic and Atmo-

spheric Administration (NoAA), which contains data from computer-generated, numer-

ical weather prediction models. Weather attributes are represented as values on a 2-

dimensional (2D) spatial grid divided into cells, where each cell is mapped to a specific

geographical area. We use GRIB files that provide the highest spatial resolution, namely

0.5◦ × 0.5◦. Each day is composed of 4 GRIB files, which are based on the 4 distinct

forecast models that run on a daily basis, with times 00:00, 06:00, 12:00, and 18:00.

Each GRIB file contains weather attribute values whose validity is for 3 hours after the

forecast, i.e., 03:00, 09:00, 15:00, and 21:00, respectively.

The Weather data obtainer maintains a tree data structure in-memory, organizing

the references (paths) of each GRIB file based on their reference time. For example, a

file with time 00:00 contains a forecast for 03:00. Given a timestamp (v.t), the tree is

searched to locate the nearest GRIB file in terms of its reference time. For instance, given

a timestamp 05:10, the forecast at 03:00 is considered as nearest in time, rather than the

one at 09:00. Then, this file is accessed in order to fetch the value corresponding to the

location (v.loc) at hand. Since there is an overhead when opening a GRIB file, a caching

mechanism is used for maintaining handles to open files. This is beneficial for sequential

requests that are served from the same GRIB file, as repeated open/close operations are

avoided, thus saving processing time. For a detailed presentation of the architecture of

the weather enrichment module refer to Koutroumanis et al. 2019.

3.2 POIs Enrichment

The POI enrichment is implemented as an Apache Spark Structured Streaming job to

improve efficiency through parallelized processing. It takes as input (a) the streaming

spatio-temporal data set of moving vehicles, (b) a set of POIs containing their spatial

information, and (c) a distance threshold θ expressed in meters. The POI data set,

provided by OpenStreetMap, refers to static points of interest described by their spatial

location p.loc = (p.x, p.y), name and type of POI. The POI enrichment aims to enrich

the spatio-temporal GPS traces of moving vehicles with the information of POIs located

at maximum distance θ from any trace. An example is depicted in Figure 2a, where

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

846 E. Tsilionis et al.

the blue rectangle represents a vehicle moving through a city’s road network, and the

red small circles refer to various places of interest. The circle centered at the vehicle’s

location with radius θ encloses all POIs which are located at maximum distance θ from

the vehicle. Hence, our goal is to efficiently identify these nearby POIs and add them to

the trace information of the vehicle.

Essentially, the POI enrichment process evaluates a distance join query over the stream-

ing spatio-temporal data set of GPS traces and the static data set of POIs with a maxi-

mum distance threshold θ. A naive solution to this problem would join the POI data set

with the entire streaming spatio-temporal data set, and then filter out the records that

have a joined distance higher than θ. This solution, however, inflicts high computation

cost of O(n ·m), where n is the number of POIs and m is the number of traces in the

streaming spatio-temporal data set, thus reducing the efficiency of our solution.

We propose a more efficient algorithm for computing the distance join query, demon-

strated in Figure 2b. Our premise is to employ a grid that partitions the spatial space

into equally sized cells. All records from both data sets can be easily assigned a cell id,

based on their associated spatial information. Since the POI data set is static (i.e. does

not change while processing the streaming data set), we start by distributing its records

to the available computing nodes, based on their corresponding cell ids. We keep the

POI records in the nodes main memories to enable fast retrieval later. Then, we start

processing the spatio-temporal data set, by distributing every streaming record to the

corresponding node, based on the computed cell id. That node performs a join operation

between the trace record and all the POI records based on their cell id values. The goal is

to evaluate the trace’s distance join result on a single node, thus reducing the communi-

cation complexity of the join operation. To this end, we opt to replicate all POI records

to nearby cells, located at maximum distance θ from the POI. This results to a new POI

data set where every cell id is associated with all the POIs located at maximum distance

θ from the cell. Hence, the aforementioned join operation is guaranteed to process all can-

didate results, without needing any additional communication between the nodes. The

last step is to refine the results, by filtering out the records that have a joined distance

higher than θ. The computation complexity of this algorithm is significantly reduced to

O(c ·m), where c is the average number of POIs in a cell, and m is the number of traces

in the streaming spatio-temporal data set. In the example of Figure 2a, the θ circle spans

through three of the cells. The fourth cell (bottom-right) is located at a distance larger

than θ from the location of the vehicle; by pruning the POIs of that cell, our algorithm

achieves higher performance without compromising the correctness of the result.

4 Composite Event Recognition

The enriched data stream from moving commercial vehicles is transmitted to the CER

module, in order to recognize various types of vehicle activity. All such activities have been

formalized in collaboration with the domain experts of the Track & Know project. Table

1 presents the input and the output of the CER component, i.e. the Event Calculus for

Run-Time reasoning (RTEC). In the following sections we present RTEC and illustrate

its use for fleet management.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

Online Event Recognition from Moving Vehicles: Application Paper 847

Table 1: Input and Output of CER. The first six input event types accompany the original

GPS stream, while the remaining ones are the result of data enrichment. All input events

are instantaneous, while all output CEs are durative.

Events Description

In
p
u
t

moving(V ,S) Vehicle V is moving with a speed S
stopped(V) Vehicle V is not moving
abruptAcceleration(V) Vehicle V accelerates abruptly
abruptDeceleration(V) Vehicle V decelerates abruptly
abruptCornering(V) Vehicle V turns abruptly
fuelLevel(V ,L) The level of fuel in tank of vehicle V is L
iceOnRoad(V) Vehicle V is moving in an icy road
closeToGas(V) Vehicle V is near a gas station

O
u
tp

u
t highSpeed(V) Vehicle V exceeds the user-specified speed limit

dangerousDriving(V) Vehicle V is potentially moving in a dangerous way
reFuelOpportunity(V) There is refueling opportunity for vehicle V

Table 2: Main predicates of RTEC.

Predicate Meaning

happensAt(E, T) Event E occurs at time T
holdsAt(F = V, T) The value of fluent F is V at time T
holdsFor(F = V, I) I is the list of maximal intervals for which F = V holds continuously
initiatedAt(F = V, T) At time T F = V is initiated
terminatedAt(F = V, T) At time T F = V is terminated

4.1 Run-Time Event Calculus

The time model of RTEC is linear and includes integer time-points. If F is a flu-

ent — a property that is allowed to have different values at different points in time

— the term F=V denotes that fluent F has value V . holdsAt(F=V, T) is a predi-

cate representing that fluent F has value V at time-point T . holdsFor(F=V, I) rep-

resents that I is the list of maximal intervals for which F = V holds continu-

ously. holdsAt and holdsFor are defined in such a way that, for any fluent F , hold-

sAt(F=V, T) if and only if T belongs to one of the maximal intervals of I for which

holdsFor(F=V, I). An event description in RTEC comprises rules that express: (a) event

occurrences using the happensAt predicate, (b) the effects of events using the initiatedAt and

terminatedAt predicates, (c) the values of fluents, with the use of the holdsAt and holdsFor

predicates, as well as other, possibly atemporal, parameters. Table 2 presents the RTEC

predicates available to the event description developer.

4.2 Pattern Representation

For a fluent F , F = V holds at a particular time-point T if F = V has been initiated

by an event at some time-point earlier than T , and has not been terminated at some

other time-point in the meantime. This is an implementation of the law of inertia. The

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

848 E. Tsilionis et al.

time-points at which F = V is initiated (respectively, terminated) are computed with

the use of initiatedAt (resp. terminatedAt) rules. highSpeed(V), for example, is a Boolean

fluent denoting that a vehicle V is moving with a speed greater than a user-specified

threshold Vθ:

initiatedAt(highSpeed(V) = true, T)←
happensAt(moving(V ,S), T),

threshold(V , speed ,Vθ), S > Vθ.

terminatedAt(highSpeed(V) = true, T)←
happensAt(moving(V ,S), T),

threshold(V , speed ,Vθ), S ≤ Vθ.

terminatedAt(highSpeed(V) = true, T)←
happensAt(stopped(V), T).

(1)

moving(V ,S) and stopped(V) are input events, presented in Table 1. threshold is an

atemporal predicate recording the numerical thresholds of the patterns — in this case,

the user-specified speed threshold of each vehicle in our knowledge base. Such a predicate

supports code transferability, since the use of different thresholds in different applications

may be realised by modifying threshold only, and not the pattern specifications. Rule-

set (1) states that highSpeed(V) = true is initiated if a moving event is reported for

vehicle V , and the speed S of V is greater than Vθ. Furthermore, highSpeed(V) = true

is terminated if V is moving with a speed less or equal to Vθ, or when a stopped event

is reported for V . By using the initiatedAt and terminatedAt rules of rule-set (1), RTEC

computes the maximal intervals I for which highSpeed(V) = true holds continuously,

i.e. holdsFor(highSpeed(V) = true, I). This is achieved by first finding all time-points Ts

at which highSpeed(V) = true is initiated, and then, for each Ts, retrieving the first

time-point Tf after Ts at which highSpeed(V) = true is terminated. Note that, in this

formulation of the Event Calculus, initiatedAt(F = V, T) does not necessarily imply that

F �= V at T . (This is similar to the ‘weak interpretation’ of initiation of the Cached

Event Calculus, Chittaro and Montanari 1996). Similarly, terminatedAt(F = V, T) does

not necessarily imply that F = V at T . Suppose that F = V is initiated at time-points

100 and 110 and terminated at time-points 125 and 135 (and at no other time-points).

In that case F = V holds at all T such that 100 < T ≤ 125.

highSpeed(V) is useful indicator on its own, but can also be used to define potentially

dangerous driving:

initiatedAt(dangerousDriving(V) = true, T)←
happensAt(abruptAcceleration(V), T),

holdsAt(highSpeed(V) = true, T).

initiatedAt(dangerousDriving(V) = true, T)←
happensAt(abruptDeceleration(V), T),

holdsAt(highSpeed(V) = true, T).

initiatedAt(dangerousDriving(V) = true, T)←
happensAt(abruptCornering(V), T), (2)

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

Online Event Recognition from Moving Vehicles: Application Paper 849

holdsAt(highSpeed(V) = true, T).

initiatedAt(dangerousDriving(V) = true, T)←
happensAt(iceOnRoad(V), T),

holdsAt(highSpeed(V) = true, T).

terminatedAt(dangerousDriving(V) = true, T)←
happensAt(end(highSpeed(V) = true), T).

terminatedAt(dangerousDriving(V) = true, T)←
happensAt(stopped(V), T).

abruptAcceleration, abruptDeceleration and abruptCornering are instantaneous input

events provided by the accelerometer device installed in each commercial vehicle (see

Table 1). iceOnRoad(V) is a weather event emitted by the data enrichment module and

states that in the location of V the road is slippery due to ice. end(F=V) is a built-in

RTEC event indicating the ending points of each maximal interval for which F = V holds

continuously. According to rule-set (2), therefore, dangerousDriving(V) = true is initi-

ated when a vehicle V is engaged in a harsh driving event, such as abrupt acceleration,

breaking or cornering, or when there is ice on the road and V has speed above the user-

specified threshold. dangerousDriving(V) = true is terminated when the speed of vehicle

V goes below the user-specified threshold, or when it stops moving. dangerousDriving(V)

is thus useful for driver behavior analysis and safety.

Companies owning commercial fleets place emphasis on fuel consumption. One way to

achieve this, is detecting opportunities for refueling. Consider the formalisation below:

initiatedAt(reFuelOpportunity(V) = true, T)←
happensAt(closeToGas(V), T),

holdsAt(highSpeed(V) = true, T),

happensAt(fuelLevel(V ,L), T),

threshold(V , fuel ,Vtank), L <
Vtank

2
.

terminatedAt(reFuelOpportunity(V) = true, T)←
happensAt(fuelLevel(V ,L), T),

threshold(V , fuel ,Vtank), L ≥ Vtank

2
.

(3)

closeToGas(V) is a spatial relation computed by the data enrichment module (see Table

1), indicating that a vehicle V is close to a gas station, which is a type of point of interest.

fuelLevel(V ,L) is an instantaneous input event emitted by the fuel sensor of each vehicle.

threshold(V , fuel ,Vtank) records the tank size of vehicles. According to rule-set (3), our

system starts flagging that vehicle V should refuel when it is close to a gas station, its

speed is above the user-specified threshold (implying uneconomic driving), and the fuel

level is lower than half of the tank size. Moreover, we stop flagging the need to refuel

when the fuel is more than half of the tank size.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

850 E. Tsilionis et al.

Fig. 3: Vehicle position signals of the data set.

(a) (b)

Fig. 4: Performance of enrichment process.

5 Implementation and Empirical Analysis

5.1 Experimental Setup

We evaluated our system on real-world positional data of vehicles, provided by Vodafone

Innovus6, our partner in the Track & Know project, which offers fleet management

services. Figure 3 illustrates the geographical coverage of the data, practically covering

Greece and some surrounding countries, for a temporal duration of 1 month. The fleet

data contains approximately 4M records and is 527 MB in the form of CSV files. We

replayed these records, according to their timestamps, in order to simulate a streaming

environment. The records are enriched with weather information, acquired by 120 GRIB

files with total size 7.4 GB. The POIs were retrieved from OpenStreetMap; we selected

only the POIs referring to gas stations which resulted to approximately 140K POIs.

The data enrichment module operated on a VM running the CentOs 7.6.1810 operating

system, on a hardware with Intel Xeon Processor and 4GB RAM. The CER module

operated on a computer with 8 cores (Intel(R) Core(TM) i7-7700 CPU @ 3.6GHz) and

16 GB of RAM, running Ubuntu 16.04 LTS 64-bit and YAP Prolog 6.2.2.

5.2 Data Enrichment

The vehicle position signals were loaded in an Apache Kafka topic, consisting of 6 par-

titions sorted by the date field. The topic was consumed by the weather enrichment

component, and the poll timeout was set to 1 sec7. The POI enrichment runs as a sepa-

6 https://www.vodafoneinnovus.com/
7 This is the time that defines a batch of messages fetched for processing.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.vodafoneinnovus.com/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

Online Event Recognition from Moving Vehicles: Application Paper 851

Fig. 5: Composite event recognition in RTEC.

rate job, and consumes weather-enriched data that were output in an intermediate Kafka

topic, and was configured to use 2 GB of RAM. In this set of experiments, we report on

the performance of data enrichment, using total execution time and throughput as main

metrics.

Figure 4 depicts the performance results of data enrichment. Figure 4a reports the

total execution time for data enrichment when increasing the number of CPU cores.

The weather enrichment was completed in 389 sec, corresponding to throughput values

of 9,792 messages/sec. Notice that this value is constant in the figure, since weather

enrichment does not use parallelization. The cache of the weather data obtainer reached

99.96% hit ratio. This high ratio was expected, since the records are temporally sorted.

The POI enrichment results correspond to distance threshold θ = 300m. As shown in the

figure, the total execution time drops when increasing the parallelism from 2 to 8 CPU

cores. This result shows that the POI enrichment component can exploit the availability

of more CPUs and scale based on the available resources.

Figure 4b shows the throughput of POI enrichment obtained from increasing the value

of θ, while fixing the number of cores to 2. Higher values of θ result in having more

POIs associated with positions of vehicles, as θ practically defines what is considered as

proximity. Also, higher values of θ imply that a larger spatial area around each vehi-

cle’s position needs to be examined, leading to decreased performance. However, when

increasing θ by a factor of 4, the performance is decreased less than 50%. Hence, our

POI enrichment component is efficient for even higher θ values. Also, it can achieve even

better performance by exploiting more CPU resources, as already shown in Figure 4a.

5.3 Composite Event Recognition

In RTEC, the CER process involves the computation of the maximal intervals of fluents.

This process takes place at specified query-times q1, q2, CER at each query-time qi is

performed over the input events that fall within a specified interval, the ‘working memory’

or window ω. All input events outside the window are discarded and not considered during

recognition. This means that at each query-time qi, CER depends only on the events that

took place in the interval (qi−ω, qi]. The size of ω as well as the temporal distance between

two consecutive query-times — the slide step (qi−qi−1) — are user-specified. Figure 5

illustrates the recognition process of RTEC. Occurrences of instantaneous input events

are displayed as dots and those of durative input events as line segments. For CER at

query-time q138, only the events marked in black are considered, whereas the greyed out

ones are neglected. Assume that the events marked in bold arrive after q137. Therefore,

two input events are delayed and by using a window size larger than the slide step, these

two events are not lost and considered at q138. In the analysis that follows, we restrict

attention to overlapping windows, i.e. windows longer than the slide step.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

852 E. Tsilionis et al.

(a) (b)

Fig. 6: CER under varying window sizes and parallel configurations.

At each query-time qi, RTEC computes from scratch the intervals of CEs, without

considering the computations of previous windows. In the case of significant delays in

the input stream, this simple approach is the best option. However, in cases where CEs are

unaffected by delays, computing their intervals from scratch is redundant. To address this

issue, we recently developed a process for computing incrementally the maximal intervals

of a CE (Tsilionis et al. 2019). Consider the first initiation rule of rule-set (2) again, and

assume that at query-time qi a delayed arrival of abruptAcceleration(V) arrived to the

CER system or/and a new interval was computed for highSpeed(V). In both cases, a new

initiation may have to be computed for dangerousDriving . To calculate new initiation

points, we use the following delta rules (the remaining initiation rules and the termination

rules of rule-set (2) are handled similarly):

initiatedAt(dangerousDriving(V) = true, T)←
[
happensAt(abruptAcceleration(V), T)

]ins
,

[
holdsAt(highSpeed(V) = true, T)

]Qi

.

(a)

initiatedAt(dangerousDriving(V) = true, T)←
[
happensAt(abruptAcceleration(V), T)

]Qi\ins
,

[
holdsAt(highSpeed(V) = true, T)

]ins
.

(b)

(4)

The superscripts of these rules express the evaluation set of the time argument T . In

rule (4)(a), abruptAcceleration(V) is evaluated only over the occurrences that arrived to

the CER system between qi−1 and qi, i.e. the occurrences in set ins. The time-points

in ins are examined against all the intervals of highSpeed(V) = true overlapping the

current window (set Qi). Rule (4)(b) is similar to (4)(a), but has a small modification

which ensures that derivations are not repeated. In this rule, only the intervals computed

at qi are considered for highSpeed(V) = true (set ins). For abruptAcceleration(V) the

occurrences within the current window that arrived by the previous query-time qi−1 (set

Qi \ ins) are used.

We performed two sets of experiments. First, since the data set is temporally sorted,

we evaluated the performance of RTEC without incremental reasoning, on varying win-

dow sizes and parallel executions. Second, we injected artificial delays to the data set,

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

Online Event Recognition from Moving Vehicles: Application Paper 853

0
50

100
150
200
250
300
350
400

(a) (b) (c)

1 2 3 4 5 6 7 8A
vg

 R
ec

og
ni

tio
n

T
im

e
(m

s)

Window size (hours)

RTEC
Incremental RTEC

5% delayed events

0
50

100
150
200
250
300
350
400

1 2 3 4 5 6 7 8A
vg

 R
ec

og
ni

tio
n

T
im

e
(m

s)

Window size (hours)

RTEC
Incremental RTEC

10% delayed events

0
50

100
150
200
250
300
350
400

1 2 3 4 5 6 7 8A
vg

 R
ec

og
ni

tio
n

T
im

e
(m

s)

Window size (hours)

RTEC
Incremental RTEC

20% delayed events

Fig. 7: Effects of incremental reasoning.

to simulate online processing, and thus compared RTEC with and without incremental

reasoning. Figure 6 shows the results of the first set of experiments. Initially, we used

a single processor to perform CER. Then, we run RTEC in parallel, by launching dif-

ferent instances of the engine, each one operating on a different processing core. Each

RTEC instance performed CER for a different set of vehicles. For example, in the case of

four processing cores each RTEC instance was responsible for one quarter of operating

vehicles. In all sets of experiments the input was the same, that is, there was no data

distribution.

We varied the window size ω from 1 to 8 hours and the slide step was always equal

to the size of the window. In the absence of delays, it is redundant to have overlapping

windows. Figure 6(a) presents the recognition times of RTEC in CPU milliseconds (ms),

while Figure 6(b) presents the throughput. The empirical analysis shows that RTEC is

capable of real-time CER even when operating on a single core. Additionally, running

RTEC in parallel leads to significant performance gains even without data distribution.

The second set of experiments concerns out-of-order streams where we compared the

performance of RTEC and its incremental extension. We injected artificially delays into

the data set. We performed three experiments, each time varying the amount of input

events being delayed. We selected uniformly 5%, 10% and 20% of the total events to

be delayed. We used a uniform distribution for selecting events, since we assume that

each event has the same probability to be delayed. In order to mimic reality as much

as possible, we used a Gamma distribution to choose the extent of delay. (The Gamma

distribution has a shape parameter k = 2 and a scale parameter θ = 2.) Thus, a delay

small in time has a higher probability to be imposed in a selected event. The average

delay time, in all settings, is approximately 8 hours.

Figures 7(a-c), display the average recognition times in CPU milliseconds for windows

ranging from 1 hour to 8 hours, and a slide step of 1 hour. As shown in Figures 7(a-c),

the incremental version of RTEC outperforms the non-incremental one in the largest

windows, i.e. those of 4 and 8 hours. In other words, the performance improvement

becomes more profound as the overlap between consecutive windows increases.

6 Discussion

We presented a stream reasoning system for online fleet management. We opted for

a separation of activities among different modules. Delegating data enrichment to a

separate module allows for the effective integration of spatial reasoning with temporal

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

854 E. Tsilionis et al.

reasoning for online CER. Additionally, the use of a dedicated module for data enrichment

allows to combine heterogeneous data sources in an efficient way. The empirical evaluation

on real-world data illustrated the scalability of our system as well as its capacity to

operate in real-time.

A challenge that we faced in the development and deployment of our system is the

memory leak of various Prolog implementations, such as YAP and SWI-Prolog, on con-

tinuous queries. To address this issue, we sometimes had to store the recognised CEs in

order to restart the engine, which is suboptimal in online processing.

Similar to other Big Data projects (Artikis et al. 2015; Patroumpas et al. 2017;

Artikis et al. 2013), the datasets of the Track & Know project did not come with a

ground truth of CEs. One way to address this issue is to construct the CE patterns in

close collaboration with domain experts. This is what we did in Track & Know. However,

although the domain experts of the project have some idea about the CEs of interest,

the precise conditions in which a CE should be recognized are not always clear. The use

of RTEC facilitated the interaction of CE pattern developers and domain experts. Pat-

terns in the language of RTEC were understood, and sometimes directly modified by the

domain experts. To facilitate this process further, we have been developing a simple lan-

guage for RTEC, with the aim of supporting people who are not familiar with the Event

Calculus or (logic) programming (Vlassopoulos and Artikis 2017). A compiler translates,

in a process transparent to the user, a specification in the simple language to an RTEC

event description that may be subsequently used for continuous query computation.

To allow for accuracy evaluation, we implemented a way of visualising our recognised

CEs by means of videos8. Our aim is to enable domain experts offer feedback on our

recognised events, i.e. classify them as true or false positives. Using such videos, domain

experts were able to perform a preliminary accuracy assessment. The findings of this

assessment indicated that some CE intervals ended later than anticipated. This is due to

the fact that the position signals of vehicles can be sparse. For example, there are some

extreme cases in which there are 24 hours between two consecutive positional signals of

the same vehicle, most likely indicating different trips. In some of these cases, the CE was

terminated on the signal of the subsequent trip, i.e. the termination was delayed. In order

to deal with this issue, we can directly use the ‘deadlines’ mechanism of RTEC, according

to which a CE is automatically terminated after a designated number of time-points since

the last initiation. A systematic accuracy evaluation based on expert feedback, using the

aforementioned visualisations, is part of our current work.

We also aim to refine the manually constructed CE patterns by means of a recently

developed technique for semi-supervised learning (Michelioudakis et al. 2019). The input

of this technique will be the expert feedback as described above, as well as a small set of

labels that may be provided with minimal resources by domain experts.

Acknowledgments

This work was funded by European Union’s Horizon 2020 research and innovation pro-

gramme Track & Know “Big Data for Mobility Tracking Knowledge Extraction in Urban

Areas”, under grant agreement No 780754.

8 See http://cer.iit.demokritos.gr/

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

http://cer.iit.demokritos.gr/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

Online Event Recognition from Moving Vehicles: Application Paper 855

References

Alevizos, E., Skarlatidis, A., Artikis, A., and Paliouras, G. 2017. Probabilistic complex
event recognition: A survey. ACM Comput. Surv. 50, 5, 71:1–71:31.

Artikis, A. and Sergot, M. J. 2010. Executable specification of open multi-agent systems.
Logic Journal of the IGPL 18, 1, 31–65.

Artikis, A., Sergot, M. J., and Paliouras, G. 2015. An event calculus for event recognition.
IEEE Trans. Knowl. Data Eng. 27, 4, 895–908.

Artikis, A., Weidlich, M., Gal, A., Kalogeraki, V., and Gunopulos, D. 2013. Self-
adaptive event recognition for intelligent transport management. In Proceedings of the IEEE
International Conference on Big Data. 319–325.

Beck, H., Dao-Tran, M., and Eiter, T. 2018. LARS: A logic-based framework for analytic
reasoning over streams. Artif. Intell. 261, 16–70.

Cervesato, I. and Montanari, A. 2000. A calculus of macro-events: Progress report. In
Seventh International Workshop on Temporal Representation and Reasoning, TIME 2000,
Nova Scotia, Canada, July 7-9, 2000. 47–58.

Chittaro, L. and Montanari, A. 1996. Efficient temporal reasoning in the cached event
calculus. Computational Intelligence 12, 359–382.

Cugola, G. and Margara, A. 2010. TESLA: a formally defined event specification language.
In Proceedings of the Fourth ACM International Conference on Distributed Event-Based Sys-
tems, DEBS 2010, Cambridge, United Kingdom, July 12-15, 2010. 50–61.

Cugola, G. and Margara, A. 2012. Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv. 44, 3, 15:1–15:62.

Demers, A. J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., and White, W. M.

2007. Cayuga: A general purpose event monitoring system. In CIDR 2007, Third Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 7-10, 2007,
Online Proceedings. 412–422.

Dong, X. L. and Srivastava, D. 2015. Big Data Integration. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers.

Dousson, C. and Maigat, P. L. 2007. Chronicle recognition improvement using temporal fo-
cusing and hierarchization. In IJCAI 2007, Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007. 324–329.

Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., and Garofalakis, M. 2019.
Complex event recognition in the big data era. VLDB Journal .

Grez, A., Riveros, C., and Ugarte, M. 2019. A formal framework for complex event process-
ing. In 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019,
Lisbon, Portugal. 5:1–5:18.

Jacox, E. H. and Samet, H. 2007. Spatial join techniques. ACM Trans. Database Syst. 32, 1,
7.

Koutroumanis, N., Santipantakis, G. M., Glenis, A., Doulkeridis, C., and Vouros,

G. A. 2019. Integration of mobility data with weather information. In Proceedings of the
Workshops of the EDBT/ICDT 2019 Joint Conference, EDBT/ICDT 2019, Lisbon, Portugal,
March 26, 2019.

Kowalski, R. A. and Sergot, M. J. 1986. A logic-based calculus of events. New Generation
Comput. 4, 1, 67–95.

Liu, M., Rundensteiner, E. A.,Greenfield, K.,Gupta, C.,Wang, S.,Ari, I., and Mehta,

A. 2011. E-cube: multi-dimensional event sequence analysis using hierarchical pattern query
sharing. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011. 889–900.

Mei, Y. and Madden, S. 2009. Zstream: a cost-based query processor for adaptively detecting
composite events. In Proceedings of the ACM SIGMOD International Conference on Man-

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

856 E. Tsilionis et al.

agement of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009.
193–206.

Michelioudakis, E., Artikis, A., and Paliouras, G. 2019. Semi-supervised online structure
learning for composite event recognition. Machine Learning 108, 7, 1085–1110.

Miller, R. and Shanahan, M. 2002. Some alternative formulations of the event calculus.
In Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert A.
Kowalski, Part II. 452–490.

Montali, M., Maggi, F. M., Chesani, F., Mello, P., and van der Aalst, W. M. P. 2013.
Monitoring business constraints with the event calculus. ACM TIST 5, 1, 17:1–17:30.

Paschke, A. 2006. Eca-ruleml: An approach combining ECA rules with temporal interval-based
KR event/action logics and transactional update logics. CoRR abs/cs/0610167.

Paschke, A. and Bichler, M. 2008. Knowledge representation concepts for automated SLA
management. Decision Support Systems 46, 1, 187–205.

Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., and Theodoridis, Y.

2017. Online event recognition from moving vessel trajectories. GeoInformatica 21, 2, 389–427.

Schultz-Møller, N. P., Migliavacca, M., and Pietzuch, P. R. 2009. Distributed complex
event processing with query rewriting. In Proceedings of the Third ACM International Con-
ference on Distributed Event-Based Systems, DEBS 2009, Nashville, Tennessee, USA, July
6-9, 2009.

Tsilionis, E., Artikis, A., and Paliouras, G. 2019. Incremental event calculus for run-
time reasoning. In Proceedings of the 13th ACM International Conference on Distributed and
Event-based Systems, DEBS 2019, Darmstadt, Germany, June 24-28, 2019. 79–90.

Vlassopoulos, C. and Artikis, A. 2017. Towards A simple event calculus for run-time reason-
ing. In Proceedings of the Thirteenth International Symposium on Commonsense Reasoning,
COMMONSENSE 2017, London, UK, November 6-8, 2017.

Zhang, H., Diao, Y., and Immerman, N. 2014. On complexity and optimization of expensive
queries in complex event processing. In International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014. 217–228.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S147106841900022X
Downloaded from https://www.cambridge.org/core. IP address: 141.237.210.158, on 20 Sep 2019 at 19:07:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S147106841900022X
https://www.cambridge.org/core

	Introduction
	Related Work
	Data Enrichment
	Weather Enrichment
	POIs Enrichment

	Composite Event Recognition
	Run-Time Event Calculus
	Pattern Representation

	Implementation and Empirical Analysis
	Experimental Setup
	Data Enrichment
	Composite Event Recognition

	Discussion
	References

