
AutoClust: A Framework for Automated Clustering
based on Cluster Validity Indices

Yannis Poulakis
Dept. of Digital Systems

University of Piraeus
Piraeus, Greece
gpoul@unipi.gr

Christos Doulkeridis
Dept. of Digital Systems

University of Piraeus
Piraeus, Greece
cdoulk@unipi.gr

Dimosthenis Kyriazis
Dept. of Digital Systems

University of Piraeus
Piraeus, Greece
dimos@unipi.gr

Abstract—Automated machine learning (AutoML) aims to
minimize human intervention during a machine learning task,
for example by means of automatic algorithm selection and its
configuration for the data set at hand. Although this research
direction has attracted much interest lately, both in academia
and industry, existing systems and tools mainly target the do-
main of supervised learning. However, unsupervised learning, in
particular clustering, also calls for AutoML solutions, especially
due to the ambiguity involved when evaluating clustering results.
Motivated by this shortcoming, in this paper, we introduce a
framework for automated clustering that encompasses two main
modules: algorithm selection and hyperparameter tuning. Our
approach to algorithm selection relies on meta-learning, based
on novel meta-features extracted from data sets that attempt to
capture similarities in the clustering structure. This approach
is coupled with a method for hyperparameter tuning based on
Bayesian optimization, where the main novelty is the proposal
of an optimization goal that combines different cluster validity
indices. We demonstrate the merits of our approach by empirical
evaluation on 24 real-life data sets, which shows promising results
when compared to existing methods.

Index Terms—automatic clustering, hyperparameter tuning,
meta-learning

I. INTRODUCTION

Automated machine learning (AutoML) is the discipline of
fully automating the modelling process of machine learning
pipelines. Recently, the topic of AutoML has attracted at-
tention with many systems, such as Auto-Weka [25], Auto-
Sklearn [9] and Google’s Vizier [10]. Unfortunately, even
though several such works target AutoML in the context of
supervised learning, there is much less work in the area of
unsupervised learning, in particular AutoML for clustering.
Partly, this is due to the inherent difficulty in evaluating
clustering results. There is a certain amount of subjectivity
when evaluating the quality of clustering due to the lack
of ground truth or a commonly accepted evaluation metric.
Instead, data mining experts typically resolve to visualization
techniques for evaluation, a method that is not always viable,
especially in cases of high-dimensional or complex data.

Motivated by this shortcoming, in this paper, we address
the Combined Algorithm Selection and Hyperparameter op-
timization problem (CASH), as defined in [25], but in the
context of unsupervised learning. Given a clustering task, an
input data set, and a set of available clustering algorithms,

the problem is to select the best clustering algorithm along
with appropriate values for its input parameter(s) according
to an optimization criterion. Essentially, the problem can be
cast as a search problem, where the search space consists of
the available clustering algorithms and the domain of values
for all potential input parameters, and the objective is to
identify the best performing configuration. We tackle this
problem by applying a combination of meta-learning (learning
from already clustered data sets) and Bayesian optimization
techniques.

In brief, our contributions can be summarized as follows:
• We present AUTOCLUST, an end-to-end framework for

automatic clustering algorithm selection based on meta-
learning and cluster validity indices (Sect. III).

• We introduce a novel set of meta-features for cluster-
ing that outperform previous approaches for algorithm
selection [8] based on statistical information and distance
distribution (Sect. III-C).

• We propose a method for hyperparameter tuning of
clustering algorithms, which capitalizes on a new opti-
mization criterion, namely regression of cluster validity
indices (Sect. III-D).

• We show an empirical evaluation of our approach using
various real-life data sets that demonstrates its advantages
against state-of-the-art methods (Sect. IV).

Also, we review related work in Sect. II, and we conclude the
paper in Sect. V.

II. RELATED WORK

Our work relates to meta-learning and automated machine
learning, focusing on unsupervised learning, in particular
clustering. The survey paper [23] reviews in detail how meta-
learning can be applied for algorithm selection. For more
recent surveys on meta-learning, we refer to [15], [26]. Also,
we refer to [3] for an overview of the application of meta-
learning to data mining problems.

Automated machine learning. Regarding the Com-
bined Algorithm Selection and Hyperparameter optimization
problem (CASH), state-of-the-art solutions such as Auto-
Sklearn [9], Auto-Weka [25], TPOT [21], etc., are based on
optimization techniques, such as genetic and Bayesian opti-
mization. Auto-Net [18] is considered as an extension to Auto-

Sklearn with sole focus on parameter exploration for modern
neural networks. Google’s Vizier [10] is a state-of-the-art
research, with focus on black-box optimization. SmartML [17]
is a system for automated selection of classification algorithms
and for hyperparameter tuning that uses both meta-learning
and Bayesian optimization. Additionally, Nural et al. [20] ex-
plore how meta-learning can be applied to regression problems
via the open source ScaLation framework. We also refer to
recent advances in Automated Data Science [2].

Although these frameworks provide solutions in the con-
text of supervised learning (classification and regression), the
CASH problem in unsupervised learning remains open. This
is generally due to the lack of information to be used for
validation purposes, such as the true clusters present in a data
set, which hinders the selection of an appropriate objective
function. Although many cluster validity indices have been
proposed for the evaluation of clustering results, there still
exists no universally applicable cluster validity index. The
reason is that each index evaluates different criteria, e.g., the
compactness of clusters, the separation between clusters, the
density of clusters, etc. Consequently, it is not straightforward
to define an optimization goal based on a specific cluster
validity index, in contrast to the case of supervised learning
where an obvious optimization goal is accuracy.

Automated Clustering. Only few works address the prob-
lem of automated clustering, and mostly tackle solely the
problem of algorithm selection. To the best of our knowledge,
Souto et al. [6] are the first to address the problem of algorithm
selection in the context of clustering. They suggest a meta-
learning approach in order to extract knowledge from similar,
previously tackled, problem instances.

Following this approach, Ferrari et al. [8] propose a new set
of novel distance-based meta-features for clustering algorithm
selection along with a ranking method for algorithm perfor-
mance. Also, Muravyov et al. [19] use meta-learning to predict
the cluster validation index that is better used according to the
data set characteristics as an additional step before selecting
an algorithm. In the recent study [24], the authors propose
a meta-learning approach with the use of internal clustering
validation criteria to separate uniform from non-uniform data
sets and predict cluster cardinality.

III. THE AUTOCLUSTFRAMEWORK

The goal of AUTOCLUST, as an AutoML system, is to pro-
vide a machine learning algorithm along with a set of values
for its input parameters that are expected to perform well for
a new problem instance. The proposed architecture consists
of two separate phases: (a) the learning phase (Sect. III-B),
which is an offline process, and (b) the online phase where
algorithm selection (Sect. III-C) and hyperparameter tuning
(Sect. III-D) take place. First, we state the problem in a formal
way (Sect. III-A).

A. Problem Formulation

Let D denote a set of n data sets D = {D1, D2, . . . , Dn}.
Also, let F (D) = {f1, . . . , fk} denote a set of k meta-features

extracted from data set D. Let A = {A1, . . . , Am} be a set
of clustering algorithms, and let Λi denote the domain of
hyper-parameters of algorithm Ai. Finally, let L(Ai(λ), D)
denote the loss of Ai with hyperparameters λ ∈ Λi on D.
Then, the Combined Algorithm Selection and Hyperparameter
optimization (CASH) problem is to find the joint algorithm and
hyperparameter setting that minimizes this loss:

A∗, λ∗ = arg min
Ai∈A,λ∈Λi

L(Ai(λ), D)

B. Offline Learning Phase

Following the paradigm of meta-learning, AUTO-
CLUST learns from already processed data sets. This is
achieved by (a) extracting a set of meta-features F (D)
for each data set D, and (b) applying different clustering
algorithms on known data sets using various configurations,
and recording their performance using cluster validity
indices [11].

In more detail, for each clustering algorithm Ai ∈ A
(i ∈ [1,m]), we have a domain Λji of discrete values for each
hyperparameter λj of algorithm Ai. In case the input domain
of a hyperparameter is continuous, we discretize it by selecting
a reasonable set of discrete values. We explore a subset
of the domain by applying a combination of Grid Search
and Random Search, when the parametric space includes
continuous values. The details on the explored search space
are provided in Section IV-A.

In the learning phase, for each data set D, we execute
each algorithm Ai several times (using |Λi| to represent this
number) for different values of hyperparameters, as indicated
by the above search methods. Thus, we invoke

∑m
i=1 |Λi|

executions of clustering algorithms for each data set, and we
evaluate the result quality. We employ a variety of widely-used
cluster validity indices including ones that rely on labeled data.
This allows for the framework to transfer knowledge gathered
from evaluating labeled data to an unsupervised environment.
The information about the execution of each algorithm on
a data set, along with its hyperparameter values and cluster
validity indexes is stored in a meta-knowledge repository, as
shown in Figure 1. At any point, if n data sets have been
processed by AUTOCLUST, the meta-knowledge repository
stores

∑n
j=1

∑m
i=1 |Λi| records, and each record consists of

the measured cluster validity indices {v1, v2, . . . }. Intuitively,
the repository is constantly updated with new data sets and
our system gradually learns algorithms and configurations that
perform best for a growing set of known data sets.

C. Algorithm Selection

AUTOCLUST adopts a meta-learning approach to address
the problem of algorithm selection. For this purpose, the
mainstream technique is to extract a carefully selected set of
meta-features that serve as a concise representation of a data
set. Then, given a new data set, we extract the same set of
meta-features and we cast the problem of finding similar data
sets to similarity matching of meta-feature descriptions. After
finding the most similar data set, we use the information in

Fig. 1. Example of the data stored in the meta-knowledge repository.

the meta-knowledge repository to retrieve the algorithm with
best performance, as recorded in the offline learning phase.

Meta-feature extraction. Existing studies in meta-feature
extraction use various types of meta-features [8], [26], but
which set of meta-features is more appropriate for each
problem is still unclear. AUTOCLUST adopts a novel set
of meta-features based on internal cluster validity indices.
Intuitively, we expect that similarity based on the values in
these internal cluster validity indices is going to reveal data
sets with similar structural properties. More formally, given a
data set Dnew, we identify the data set D′ ∈ D, such that
arg max sim(F (D′), F (Dnew)) among all data sets in the
meta-knowledge repository, where sim denotes a similarity
function applied on vectors F (D′), F (Dnew). In turn, this
allows AUTOCLUST to recommend as clustering algorithm for
Dnew, the best performing algorithm in D′. To determine the
best performing algorithm we use the Adjusted Rand Index
(ARI) [22]. The list of internal cluster validity indices used
is listed in Table I. To extract the meta-features F (D) for
a given data set D, we need to employ the same clustering
algorithm for each data set, so that the relative similarity
between the produced cluster validity indices is captured in a
meaningful way. Moreover, the selected clustering algorithm
should not be sensitive to the clusters shape and should
require the minimum possible input parameters. Based on this
rationale, we choose the MeanShift clustering algorithm, which
only requires bandwidth as input parameter, which is in turn
automatically selected [5].

Algorithm selection. For the actual step of algorithm selec-
tion, we adopt a k-nearest neighbor approach. When k = 1, we
identify the most similar meta-features to the data set at hand,
and we obtain the best performing clustering algorithm from
the meta-knowledge repository. When k > 1, we identify the k
most similar meta-features, which may correspond to different
clustering algorithms. We use majority voting to determine
the selected algorithm. As will be shown in Section IV, the k-
nearest neighbor approach works better for this task than other
classifiers that were tested (Random Forests and Multilayer
Perceptron).

TABLE I
ALGORITHMS AND CLUSTER VALIDITY INDICES SUPPORTED BY

AUTOCLUST

Algorithms in
AUTOCLUST

K-means, DBSCAN, Hierarchical, Spectral, OP-
TICS, Birch, MeanShift, Agglomerative

Cluster validity
indices

Silhouette [16], Dunn [16], C-Index [7], Calinski
Harabasz [16], Davies Bouldin [16], SDbw [12],
CDBW [13], Tau [4], Ratkowsky Lance [4], McClain
Rao [4]

D. Hyperparameter Tuning

We couple our approach for algorithm selection with a
method for hyperparameter tuning, which allows setting val-
ues of input parameters, a necessary but difficult and time-
consuming task. For this purpose, we use a state-of-the-art
Bayesian optimization method, an iterative algorithm that is
used to optimize expensive black-box functions. We choose
to implement a Tree Structured Parzen Estimator approach,
as described in [1].

The major challenge that arises is choosing an evaluation
metric to define as an optimization target. Different from
supervised learning, where the labels are known and the
optimization goal is straightforward to define, in clustering the
lack of supervision makes metrics that rely on the concept of
ground truth unavailable. Even though other metrics do exist,
such as Silhouette, CDBW, etc., known as internal cluster
validity indices, none of them fits as a universal solution to
all problem instances.

To address this challenge, we present a novel method to de-
fine a target function fit for Bayesian optimization in the con-
text of clustering. We aim to explore the relationship between
internal cluster validity indices {v1, v2, . . . } and the Adjusted
Rand Index (ARI) and learn a mapping between them. To this
end we train a Regression model RM(v1, v2, . . .) that takes
cluster validity indices as input and provides prediction for
ARI. In order to better capture nonlinear dependencies, we opt
to use a Multilayer Perceptron Regressor (MLP) that uses 10
different cluster validity indices as predictor variables (listed
in Table I). After different tests, we employ a neural network
(illustrated in Figure 2) that follows a simple architecture with
10 input nodes that correspond to the cluster validity indices,
3 hidden layers of 60, 30 and 10 neurons respectively and a
1-node output layer of the ARI prediction. All of the hidden
layers and the output layer use a ReLU activation function
and a Normal Kernel initializer. The neural network uses an
ADAM optimizer in order to minimize the Mean Squared
Error (MSE).

After training, the aforementioned model is used at the eval-
uation steps of the iterative Bayesian optimization algorithm.
We perform regression on the available cluster validity indices,
in order to combine them into one evaluation metric, as
depicted in Figure 2. First the search space is narrowed down
by the algorithm selection process. Afterwards the Bayesian
optimization procedure is initiated, where a configuration is
selected at time and is executed on the data set at hand. This

Fig. 2. Implementation of the MLP predictive model during the Bayesian
Optimization procedure.

configuration is evaluated according to a set of 10 internal
cluster validity indices. These measures are provided as input
to the MLP regressor and the ARI prediction provided takes
the role of the target function. Finally the surrogate model is
updated and the process is iterated with the next point selected
until the budget of evaluations is reached.

Consequently, this method enables the generalized applica-
bility of the Bayesian optimization procedure on clustering
new, unseen problem instances, without the need of prior
knowledge of a best evaluation metric.

IV. EXPERIMENTAL EVALUATION

The AUTOCLUST framework has been developed using
Python 3, on top of the HyperOpt and Scikit-Learn libraries,
deployed in the BigDataStack environment [14].

A. Experimental Setup and Methodology

Data sets. A set D of 24 data sets (Table III) was used,
obtained from the UCI Machine Learning Repository. These
data sets include information on the natural clustering of the
data (ground truth). All of the data sets were pre-processed
to be transformed as more appropriate input for the task of
clustering.

Methodology. To assess the performance of AUTOCLUST
we define two set of experiments. In the first one (Sec-
tion IV-B), we assess the ability of the framework to select
the best performing algorithm, determined offline by brute-
force evaluation of all clustering algorithms, indicated by the
Adjusted Rand Index (ARI) [22]. We measure the quality
of results by evaluating in how many cases the meta-learner
selects the best performing clustering algorithm. We call this
metric the top-1 accuracy. We also report a relaxed metric
(top-3 accuracy), where the meta-learner is allowed to return
a set of 3 algorithms and measure again how many times the
best performing algorithm is included in this set.

In the second set of experiments (Section IV-C), we address
the overall performance of the framework, after hyperparam-
eter tuning. We compare the results of AUTOCLUST after
applying Bayesian optimization with a limited evaluation bud-
get (i.e., number of iterations) and our novel target function,
to the results achieved by two different methods, which are
considered as baselines. The first method simulates a basic

TABLE II
DOMAIN OF HYPERPARAMETERS Λi FOR EACH ALGORITHM Ai .

Algorithm (Ai) Hyperparameter Search Space (Λi)
Affinity Propagation damping [0.5,1]
Agglomerative No Clusters [2,30]

Affinity [“Euclidean”, “l1”, “l2” ,
“manhattan”, “cosine”]

Linkage [“ward”, “complete”,
“average”,“single”]

Birch Threshold [0.2,0.7]
No Clusters [2,30]

DBSCAN Eps [0.1,0.7]
Min Samples [3,7]

K-means No Clusters [2,30]
MeanShift Bandwidth Automatically Selected
OPTICS Min Samples [3,7]

Cluster Method [“xi”, “DBSCAN”]
Spectral Clustering No Clusters [2,30]

gamma [0.5,1.5]

practice for selecting a clustering model. From the execution
of all of the available algorithms with their default hyperpa-
rameters, the best one is selected based on the optimization of
the Silhouette index. The second one refers to exhaustively
searching configurations and using each of the 10 internal
cluster validity indices to indicate the best performing one (but
each time using a single index). This target for comparison is
thought to simulate the case of a Data Science practitioner,
who selects one index from the available ones for evaluation
of clustering results.

Parameters. The configurations search space for hyper-
parameter tuning that we explore is set by discretizing –
when necessary – each individual domain of the parameters
of the algorithms. Additionally, when these domains include
continuous values we include a random selection technique
of 20 evaluations uniformly at random. The minimum and
maximum values for each parameter are presented in Table II
with steps of 1 and 0.1 for discrete and continuous variables
respectively.

B. Results on Algorithm Selection

In this experiment, we evaluate the performance of AUTO-
CLUST with the K-Nearest Neighbors (KNN) meta-learner. We
also compare its performance to two different meta-learners:
Multilayer Perceptron (MLP) and Random Forest (RF). Both
MLP and RF are used with the default parameters provided by
Scikit-Learn. KNN is executed for different values of k (from
1 to 10) and evaluated for the best performing value of k.

As for the meta-features used for data representation, we
compare two different sets; our novel set of meta-features
based on internal cluster validity indices, against the state-of-
the-art approach for algorithm selection in clustering proposed
by Ferrari et al. [8], which is based on the pairwise distance
distribution of objects in the data set.

The set of available algorithms that are to be predicted is
listed in Table III. We report that 2 of the 8 algorithms (namely
MeanShift and OPTICS) were not indicated as best performing
algorithm in any of the 24 data sets used in our study. Ac-
cording to this observation, a simplistic competitive approach

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

KNN MLP RandomForest

A
c
c
c
u
ra

c
y
 (

%
)

Meta-learners

AutoClust (top-1)
Ferrari et al.(top-1)

AutoClust (top-3)
Ferrari et al.(top-3)

Fig. 3. Top-1 and top-3 accuracy for algorithm selection as achieved for
different combinations of 3 meta-learners and 2 sets of meta-features.

is that of random algorithm selection that is equivalent to
throwing a dice to select an algorithm out of the remaining 6
algorithms, thus expecting accuracy of 16.6%.

Figure 3 shows the results of the meta-features used by
AUTOCLUST against the meta-features used in [8], in terms
of top-1 and top-3 accuracy, respectively. In the case of top-1
accuracy, AUTOCLUST outperforms the approach of Ferrari
et al. [8] when using KNN (59.25% vs. 56.6%). Recall that
the random algorithm selection achieves a poor 16.6%. When
using other meta-learners (MLP and RF), this improvement
increases, although the absolute performance drops for both
approaches. Thus, our first finding is that our meta-features
work better than the distance-based meta-features of [8]. Our
second finding is that KNN works better than MLP and RF,
thus validating our choice of KNN as the meta-learner used in
AUTOCLUST. When considering top-3 accuracy, we observe
that the absolute accuracy values are higher, as expected. This
means that much higher accuracy (in the order of 85%–92.5%
can be achieved, if we allow AUTOCLUST to select 3 algo-
rithms out of the 8 available ones. Again, KNN outperforms all
the other meta-learners, but the approach of [8] is marginally
better than AUTOCLUST in the case of KNN. Notice however
that the differences between the two approaches are very small
in this experiment.

C. Results on the Overall Performance of AUTOCLUST

In this experiment, we evaluate the overall quality achieved
by the end-to-end execution of AUTOCLUST, including the
hyperparameter tuning. The quality of results is measured
using the Adjusted Rand Index (ARI), a similarity measure that
indicates how similar the clustering obtained by AUTOCLUST
is compared to the ground truth. The evaluation budget set
for the Bayesian optimization procedure of the framework is
set to 40 trials and the MLP Regressor responsible for ARI
prediction is trained for 100 epochs.

Comparison to Default Parameters. In this experiment,
we compare AUTOCLUST against a baseline approach (called
Default ARI). We consider as competitor the best performing
clustering algorithm from the 8 available ones, using their

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9
 1

0
 1

1
 1

2
 1

3
 1

4
 1

5
 1

6
 1

7
 1

8
 1

9
 2

0
 2

1
 2

2
 2

3
 2

4

A
d

ju
s
te

d
 R

a
n

d
 I

n
d

e
x
 (

A
R

I)

Data sets

AutoClust ARI
Default ARI

ARI Difference

Fig. 4. Comparison of AUTOCLUST performance vs. Exploration of algo-
rithms with default parametric values and silhouette index optimization.

default hyperparameter values provided by Scikit-Learn. The
best performing clustering algorithm is determined by the
Silhouette coefficient, a metric that we choose due to its
popularity for evaluating clustering results.

Figure 4 shows the obtained ARI measurements for AUTO-
CLUST (in light grey), the competitor Default ARI (in grey),
and the difference (in black), for the 24 data sets (depicted on
the x-axis). AUTOCLUST outperforms the baseline in half of
the cases, and in several cases the difference is substantial (up
to 0.62). The baseline is better in 7 cases, albeit the difference
is much smaller (at most 0.20). In the remaining cases, the
result is almost the same. Essentially, this experiment demon-
strates that AUTOCLUST usually outperforms the common
practice of running multiple clustering algorithms and keeping
the best.

Comparison to Exhaustive Search. In this experiment, we
demonstrate the usefulness of our new optimization goal that
combines existing cluster validity indices. To this end, we
compare against a method called Exhaustive Search, which
corresponds to the brute force evaluation of the hyperparam-
eter values in the search space indicated in Table II. The
optimization goal of Exhaustive Search is set to be a single
cluster validity index, thus we have 10 variants of Exhaustive
Search each optimizing a different index. We compare the ARI
achieved by AUTOCLUST against each of these 10 variants.

Table III presents the results of this comparison for each
data set, with the last column (“wins”) measuring the number
of variants of Exhaustive Search that AUTOCLUST outper-
forms for each data set. On average, AUTOCLUST outperforms
7.5 out of the 10 variants. This shows that optimizing a single
cluster validity index is not a good solution, thereby supporting
our approach for an optimization goal that combines different
cluster validity indices.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed AUTOCLUST, a novel solution
for automated clustering. We introduced a new set of meta-

TABLE III
DETAILED COMPARISON OF EXHAUSTIVE SEARCH AND AUTOCLUST IN TERMS OF ADJUSTED RAND INDEX, ON A SET OF 24 REAL-LIFE DATA SETS.

FOR EXHAUSTIVE SEARCH, WE SELECT THE BEST CONFIGURATION BASED ON EVERY SINGLE ONE OF THE 10 POPULAR INTERNAL CLUSTER VALIDITY
INDICES. THE COLUMN “WINS” RECORDS HOW MANY TIMES (OUT OF 10) AUTOCLUST PRODUCES BETTER RESULTS.

Data set AutoClust CIndex Silhouette SDbw Ratkowsky Lance mcclain Rao Dunn davies bouldin CDBW Calinski Harabasz Tau Wins
arrythmia 0.053338 -0.02388 0.004002 0.043805 0.102981 -0.02388 0.03179 -0.00797 -0.04677 0.050228 0.178618 8
creditapproval 0.126332 0.002388 0.043704 0.011888 0.402086 -0.00246 0.100307 0.011888 -0.00715 0.043704 0.043704 9
balance scale 0.06021 0.032206 0.122753 0.169141 0.143459 0.032206 0.034252 0.065231 0.029474 0.122753 0.122753 4
breast cancer 0.655808 -0.08346 0.697157 0.571898 0.849761 -0.08346 0.002575 0.456599 -0.08342 0.849761 0.692396 6
cpu pre.csv -0.00244 0.091799 0.000147 0.003683 0.002813 0.094248 0.000507 0.053573 0.092846 0.252434 0.09651 0
dermatology 0.853281 0.006382 0.080987 0.352213 0.572695 0.006382 6.17E-05 0.650824 0.056232 0.570933 0.456818 10
ecoli 0.677235 0.004318 0.004373 0.030322 0.756124 0.004318 0.037978 0.053926 0.014391 0.753814 0.803048 7
german 0.022979 -0.01959 -0.00665 -0.00313 0.025637 -0.00434 0.002665 0.016203 -0.00665 -0.00313 -0.00313 9
glass 0.22764 -0.00961 0.010579 -0.03442 0.267645 -0.03771 -0.00235 0.037543 0.018231 0.202337 0.230373 8
haberman 0.000956 -0.04943 -0.01296 0.026567 -0.00196 -0.04943 0.011577 0.152523 -0.01296 -0.00252 -0.00252 7
heart-statlog 0.235252 -0.00253 -0.00122 0.106031 0.348755 -0.0026 0.001852 0.007016 -0.00253 0.357626 0.219844 8
iono 0.265788 -0.03304 -0.03695 -0.02921 0.177607 -0.03304 0.004473 0.628927 -0.05573 0.177607 0.099985 9
iris 0.549894 0.009058 0.568116 0.569446 0.568116 0.009058 0.568116 0.461129 0.030176 0.568116 0.568116 4
segment 0.296011 0.0004 0.0004 0.313976 0.104139 0.0004 0 0.000186 0.007267 -0.00038 -0.00038 9
sonar 0.001087 0.002295 0.002049 -0.00436 0.000101 -0.00421 -0.00121 -0.00436 0.001163 0.008546 0.014516 5
tae 0.034381 0.007541 0.015761 0.004679 0.089964 0.007541 0.042051 0.030829 0.015761 0.085451 0.042051 6
thy 0.73179 0.060863 0.11144 -0.06784 0.74776 -0.06784 0.031407 0.060863 0.094704 0.409613 0.954922 8
vehicle 0.083593 -5.89E-05 -8.19E-05 0.010517 0.085913 -5.89E-05 9.54E-05 -0.00052 0.05131 0.085913 0.084687 7
vowel 0.028881 0.035002 0.001861 -0.00403 -0.00306 0.000236 -0.00462 0.02341 0.015206 -0.00403 -0.00462 9
wdbc 0.613728 -0.00555 0.002403 0.019982 0.742286 -0.00555 0.002403 0.358676 0.013982 0.742286 0.600206 8
wine 0.616866 0.011538 0.011526 -0.00517 0.948669 0.011538 -0.00196 -0.00517 0.035201 0.948669 0.825004 7
wisc 0.741323 -0.07053 -0.04252 0.35786 0.866065 -0.09911 0.002575 0.738869 -0.09911 0.8444 0.691639 8
yeast 0.15036 -0.01501 -0.00092 0.169666 0.093953 -0.01501 0.00298 0.02294 0.005218 0.022202 0.062958 9
zoo 0.65808 0.033596 -0.03218 -0.00762 0.649351 -0.04324 0.250182 0.432342 -0.0458 -0.00762 0.883374 9

features, based on internal cluster validity indices and devel-
oped a method based on a regression technique that combines
this set of indices to provide a clear optimization target, which
can be in turn used as a target function for hyperparameter
tuning with Bayesian optimization. We demonstrate the merits
of our approach experimentally using 24 real-life data sets.
Regarding future work, our plans are to further improve
the algorithm selection step, by exploring extended sets of
meta-features that will serve as good indicators of similar
clustering structure in the data sets. Moreover, we intend to
build a scalable version of our framework that will be readily
applicable for Big Data.

ACKNOWLEDGMENT

This work is supported by EU/H2020 project BigDataStack, which
has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 779747.

REFERENCES

[1] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-
parameter optimization. In Proc. of NIPS’11, pages 2546–2554, 2011.

[2] T. D. Bie, L. D. Raedt, H. H. Hoos, and P. Smyth. Automating Data
Science (Dagstuhl Seminar 18401). Dagstuhl Reports, 8(9):154–181,
2019.

[3] P. Brazdil, C. G. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning
- Applications to Data Mining. Cognitive Technologies. Springer, 2009.

[4] M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs. An examination
of indices for determining the number of clusters : NbClust Package. 09
2013.

[5] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature
space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603–619,
2002.

[6] M. C. P. de Souto, R. B. C. Prudencio, R. G. F. Soares, D. S. A. de
Araujo, I. G. Costa, T. B. Ludermir, and A. Schliep. Ranking and
selecting clustering algorithms using a meta-learning approach. In Proc.
of IJCNN’08, pages 3729–3735, 2008.

[7] B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis. 2009.
[8] D. G. Ferrari and L. N. de Castro. Clustering algorithm selection by

meta-learning systems: A new distance-based problem characterization
and ranking combination methods. Inf. Sci., 301:181–194, 2015.

[9] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and
F. Hutter. Efficient and robust automated machine learning. In Proc. of
NIPS’15, page 2755–2763, 2015.

[10] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley.
Google vizier: A service for black-box optimization. In Proc. of
KDD’17, pages 1487–1495. ACM, 2017.

[11] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation
techniques. J. Intell. Inf. Syst., 17(2-3):107–145, 2001.

[12] M. Halkidi and M. Vazirgiannis. Clustering validity assessment: Finding
the optimal partitioning of a data set. In Proc. of ICDM’01, pages 187–
194, 2001.

[13] M. Halkidi and M. Vazirgiannis. A density-based cluster validity
approach using multi-representatives. Pattern Recognition Letters,
29(6):773 – 786, 2008.

[14] D. Kyriazis et al. BigDataStack: A holistic data-driven stack for big data
applications and operations. In Proc. of 2018 IEEE BigData Congress,
pages 237–241, 2018.

[15] C. Lemke, M. Budka, and B. Gabrys. Metalearning: a survey of trends
and technologies. Artif. Intell. Rev., 44(1):117–130, 2015.

[16] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu. Understanding of internal
clustering validation measures. In Proc. of ICDM’10, pages 911–916,
2010.

[17] M. Maher and S. Sakr. SmartML: A meta learning-based framework
for automated selection and hyperparameter tuning for machine learning
algorithms. In Proc. of EDBT’19, pages 554–557, 2019.

[18] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hut-
ter. Towards automatically-tuned neural networks. In Proc. of
ICML/AutoML’16 workshop, pages 58–65, 2016.

[19] S. Muravyov and A. Filchenkov. Meta-learning system for automated
clustering. In P. Brazdil, J. Vanschoren, F. Hutter, and H. H. Hoos,
editors, Proc. of PKDD/AutoML’17 workshop, pages 99–101, 2017.

[20] M. V. Nural, H. Peng, and J. A. Miller. Using meta-learning for model
type selection in predictive big data analytics. In Proc. of IEEE Big
Data’17, pages 2027–2036, 2017.

[21] R. S. Olson and J. H. Moore. TPOT: A tree-based pipeline optimization
tool for automating machine learning. In Proc. of ICML/AutoML’16
workshop, pages 66–74, 2016.

[22] W. M. Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66(336):846–850, 1971.

[23] K. Smith-Miles. Cross-disciplinary perspectives on meta-learning for
algorithm selection. ACM Comput. Surv., 41(1):6:1–6:25, 2008.

[24] J. A. Sáez and E. Corchado. A meta-learning recommendation system
for characterizing unsupervised problems: On using quality indices to
describe data conformations. IEEE Access, 7:63247–63263, 2019.

[25] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-weka:
combined selection and. hyperparameter optimization of classification
algorithms. In Proc. of KDD’13, pages 847–855, 2013.

[26] J. Vanschoren. Meta-learning: A survey. CoRR, abs/1810.03548, 2018.

