
Parallel and Distributed Processing of Reverse
Top-k Queries

Panagiotis Nikitopoulos1, Georgios A. Sfyris2, Akrivi Vlachou3, Christos Doulkeridis4 and Orestis Telelis5

Department of Digital Systems
School of Information and Communication Technologies

University of Piraeus
Piraeus, Greece

{1nikp,4cdoulk,5telelis}@unipi.gr, 2george.sfiris@gmail.com, 3avlachou@aueb.gr

Abstract—In this paper, we address the problem of processing
reverse top-k queries in a parallel and distributed setting. Given
a database of objects, a set of user preferences, and a query
object q, the reverse top-k query returns the subset of user
preferences for which the query object belongs to the top-
k results. Although recently, the reverse top-k query operator
has been studied extensively, its CPU-intensive nature results in
prohibitively expensive processing cost, when applied on vast-
sized data sets. This limitation motivates us to explore a parallel
processing solution, to enable reverse top-k query evaluation over
GBs of data in reasonable execution time. To the best of our
knowledge, this is the first work that addresses the problem of
parallel reverse top-k query processing. We propose a solution
to this problem, called DiPaRT, which is based on MapReduce
and is provably correct. DiPaRT is empirically evaluated using
GB-sized data sets.

Index Terms—reverse top-k, distributed, parallel

I. INTRODUCTION

Preference-aware databases have attracted wide attention
recently, due to the increased significance of personalization
and ranking for real-life applications. The most well-known
operator is the top-k query, the use of which is ubiquitous in
modern systems. Given a database of objects described by a
set of numerical scoring attributes and a user with a preference
(scoring) function defined over these attributes, a top-k query
retrieves the k objects with the best scores for the particular
preference function. In the model that is widely used in related
work and in practice, users express their preferences through
linear top-k queries, defined by assigning a weight to each
of the scoring attributes, indicating the importance of each
attribute to the user. Assuming a stored set of user preferences,
and a query q, the reverse top-k query [15] returns the subset
of users for which q belongs to their top-k results.

Even though several centralized algorithms [6], [14]–[18]
for reverse top-k query processing have been proposed, they
typically entail prohibitively expensive processing cost, when
confronted with very large (GB-sized) data sets; we demon-
strate this experimentally in Section V-A. This is due to the
CPU-intensive nature of reverse top-k processing. This short-
coming motivates us to explore parallel processing solutions
for evaluating reverse top-k queries over large-sized input data
sets.

We assume a generic parallel setting, where data is hori-
zontally partitioned among nodes. Hence, each participating
node has access to a disjoint subset of data objects and
user preferences. Based on this setup, we design a parallel
algorithm that consists of three phases: in the first phase, nodes
perform local processing on subsets of data objects and user
preferences and produce local results; in the second phase,
the local results are re-partitioned and distributed to nodes in
order to perform the computation entirely in parallel; lastly, in
the third phase, result merging takes place in order to deliver
the final result. To the best of our knowledge, the problem of
parallel and distributed processing of reverse top-k queries has
not been studied before.

As an application scenario, consider any popular online shop
that has registered the profiles (preferences) of millions of
individual users, who retrieve ranked results from millions
of data items. The online shop is interested in designing a
focused, personalized marketing strategy, in order to discover
the subset of its customers (the reverse top-k result), which
would consider buying a product of interest (the query object).
Such a data analysis process is a batch processing task that
is performed, after having collected the historical data of user
preferences and product descriptions.

Our contributions can be summarized as follows:
• We introduce and state formally the problem of parallel

and distributed reverse top-k query processing (Sect. III).
• We propose a parallel processing algorithm, called Di-

PaRT (Distributed and Parallel Reverse Top-k algorithm),
which is based on MapReduce and computes the correct
reverse top-k query result set (Sect. IV).

• We provide an implementation of DiPaRT in Hadoop, and
evaluate it using large-sized data sets (Sect. V).

Also, Sect. II presents preliminary concepts, Sect. VI reviews
related work, and Sect. VII concludes our study.

II. PRELIMINARIES

Let D be an n-dimensional data space, where each dimen-
sion i = 1, . . . , n corresponds to a numerical non-negative
scoring attribute. Let S ⊆ D denote a set of database objects.
Each p ∈ S is a point p = {p[1], . . . , p[n]}, where p[i] is a
value on dimension i.

Fig. 1. Running example of DiPaRT algorithm.

A top-k query is defined with reference to a positive integer
k and a scoring function f that aggregates the individual
scores of any object into an overall score. We consider
the most commonly used weighted sum scoring function
fw(p) =

∑
i w[i]p[i], which associates a query-independent

non-negative weight w[i] ≥ 0, with each dimension i. We
assume

∑
i w[i] = 1, as weights can be normalized, without

consequence to the top-k query result set. Without loss of
generality, we assume that smaller score values are preferable.
The result set of a top-k query is a subset T (w, k) ⊆ S,
satisfying |T (w, k)| = k and ∀pi, pj such that pi ∈ T (w, k),
pj ∈ S − T (w, k): fw(pi) ≤ fw(pj). Tie-breaking may be
needed for T (w, k) to be defined precisely, but we do not
make any particular assumption with respect to it.

A reverse top-k query [15] identifies all weighting vectors
for which a query object q belongs to the top-k result set.
Formally, given a point q, a positive integer k and two
data sets, S and W , of data points and weighting vectors
respectively, a vector wi ∈ W belongs to the reverse top-k
result set R(S,W, k, q) of q, if and only if ∃p ∈ T (wi, q)
such that fwi(q) ≤ fwi(p). This definition corresponds to the
bichromatic version of the reverse top-k query (cf. [15]), which
assumes that a set of user preferences W is provided.

The following two important properties that have been
identified in previous work (among others in [15]) indicate
the connection between top-k and reverse top-k queries.

Corollary 1: Given any two points p, p′ ∈ S, p dominates
p′, denoted as p ≺ p′, if (1) p[i] ≤ p′[i] on every dimension i;
(2) p[j] < p′[j] on at least one dimension j. Consequently, if
p ≺ p′:

- fw(p) ≤ fw(p
′) for any weighting vector w,

- R(S,W, k, p′) ⊆ R(S,W, k, p) for any set W of weight-
ing vectors.

III. THE PARALLEL & DISTRIBUTED RTOP-K PROBLEM

In our setting, we consider two data sets S and W arbitrarily
partitioned and distributed over different nodes (servers). Each
server, in principle, takes as input subsets Si ⊆ S (where
Si ∩ Sj = ∅, S =

⋃
Si) and Wi ⊆ W (where Wi ∩Wj = ∅,

W =
⋃
Wi), and the goal is to compute the reverse top-

k result R(S,W, k, q), while reducing the execution time
through parallel processing.

The naive approach of collecting all data at a central location
and performing the reverse top-k query processing using
a state-of-the-art centralized algorithm [17] is prohibitively
expensive. Thus, we turn our attention to parallel processing
solutions. Let us consider a plain approach that computes local
reverse top-k results over subsets Si and Wi, and reports the
union of the local results as the final result. In the general
case, this approach fails to compute the correct reverse top-k
result, since the result set may include weighting vectors that
do not belong to the R(S,W, k, q) (false positives).

Lemma 1: There exist instances of the Parallel and
Distributed Reverse Top-k Problem wherein the union⋃
R(Si,Wi, k, q) of local reverse top-k results does not pro-

vide a correct global reverse top-k solution.
Proof: (Sketch) Since Si and Wi are arbitrary subsets

of S and W , it is sufficient to show that there exists one
partitioning for which the correct solution is not granted.
Assume w for which q is ranked in the k′ > k position,
therefore w 6∈ R(S,W, k, q). We can construct a partitioning,
such that all data points that are ranked higher than q belong
to S1. Then, for i 6= 1 it holds that w ∈ R(Si,Wi, k, q),
therefore w is reported as a false positive.

IV. THE DIPART ALGORITHM

A. Overview

The DiPaRT algorithm is designed as a single MapReduce
job and consists of three phases: Map, Shuffle and Reduce.
In the first phase (Map), each server takes as input arbitrary
subsets Si ⊆ S and Wi ⊆ W , and computes output sets
S′i ⊆ Si and W ′i ⊆ Wi, by pruning unnecessary objects.
In the second phase (Shuffle), the sets

⋃
S′i and

⋃
W ′i are

redistributed to the servers, using intentional assignment or
replication, in order to ensure correctness during parallel
processing (as indicated by Lemma 1). In the third phase
(Reduce), each server takes as input sets S′′i and W ′′i (that
emerge from repartitioning of

⋃
S′i and

⋃
W ′i) and computes

part of the reverse top-k result independently, so that a plain
union of individual result sets yields the final result.

 0

 100

 200

 300

 400

 500

5 10 50

T
im

e
 (

s
e
c
)

Size of data set W (GB)

DiPaRT Reduce DiPaRT Map

(a) Time

 1e+07

 1e+08

 1e+09

 1e+10

5 10 50

W
e
ig

h
ti
n
g
 V

e
c
to

rs

Size of data set W (GB)

W
W"

R(S,W,k,q)

(b) Weighting Vectors

 1e+06

 1e+07

 1e+08

 1e+09

5 10 50

D
a
ta

 O
b
je

c
ts

Size of data set W (GB)

S S’ S"

(c) Data Objects

Fig. 2. Performance of DiPaRT for various sizes of data set W , using TPC-H.

DiPaRT exploits the following properties to prune data
objects and preference vectors during the Map phase:

• Dominance-based pruning. In any local data partition Si,
data points p ∈ Si that are dominated by q do not affect
the reverse top-k result and can be safely pruned. Thus, a
simple way to define S′i is to remove from Si those data
objects dominated by q.

• Vector pruning. A simple way to determine W ′i from Wi

is to remove all weighting vectors w ∈ Wi that do not
belong to the local reverse top-k result R(Si,Wi, k, q)
based on local datasets Si and Wi. It is trivial to show
that these vectors are guaranteed not to appear in the final
reverse top-k result.

B. Implementation

Fig. 1 demonstrates a running example of DiPaRT algorithm
for k = 2 and q = {6, 4}. The Map function of DiPaRT, takes
as input subsets Wi ⊂ W and Si ⊂ S, the query point q, the
number k and a number r indicating the number of Reduce
tasks. It applies dominance-based pruning for data objects by
comparing them to the query object q. In the example of Fig. 1,
the data objects p3 and p6 are pruned in the two map tasks
respectively, since they are both dominated by query point q.
The surviving data objects S′i are maintained in Map task’s
main memory, along with all the weighting vectors w ∈ Wi.
As soon as the InputSplit is exhausted, DiPaRT performs
vector pruning by using the RTA algorithm [15]. For example,
in Fig. 1, the first Map task prunes weighting vector w1, as it
is not part of the local result set R(Si,Wi, k, q).

In technical terms, a customized InputFormat that creates
InputSplits (a logical representation of a unit of input work)
containing records from both data sets, is implemented. This
customized InputFormat provides input data to the Map func-
tion, and is configured to first provide objects p ∈ Si and then,
vectors w ∈Wi. Also, the size of the input data sets |Wi|+|Si|
is limited to be at most 128 MBs, to enable temporary storage
of both sets in the main memory of a Map task.

In the Shuffle phase, DiPaRT replicates
⋃
S′i to all Reduce

tasks, while it distributes
⋃
W ′i arbitrarily to Reduce tasks,

by exploiting the key of each intermediate tuple, as shown in
Fig. 1.

In the Reduce phase, our goal is to avoid having a central
point of merging intermediate result sets. The Reduce function
of DiPaRT takes as input a partition of

⋃
W ′i and the entire⋃

S′i, along with the value k and the query point q, and pro-
duces the local reverse top-k result, using the RTA algorithm.
In the running example of Fig 1, all Reduce tasks take as
input the entire

⋃
S′i (namely p1, p2, p4, p5) and a partition of

weighting vectors (namely w2, w3 in the first Reduce task and
w4 in the second). Then, each Reduce task computes the local
result independently. The final result is the union of these local
results.

V. EXPERIMENTAL EVALUATION

A. Limitations of Centralized Algorithms

We demonstrate the limitations of centralized reverse top-
k algorithms, RTA [16] and branch-and-bound [17], when
confronted with really big data sets. We implemented both
algorithms in Java 7, and deployed them on a machine with
a 4-core CPU running at 3.6GHz and 16GB of RAM. Both
algorithms were tested with input 4-dimensional data sets of
10GB (5GB S and 5GB W) uniformly (UN) distributed, and
using a reverse top-k query with k=20 that returns 40% of W
as result. The branch-and-bound algorithm required 4 hours of
pre-processing to build the R-Trees for both data sets S and W ,
plus 48 hours to report the final result set. RTA did not report
the result set after 48 hours. Hence, it is clear that centralized
processing is not a feasible solution in the case of massive
volumes of input data. Also, these experiments demonstrate
that the reverse top-k query is a costly query operator, and
its parallelization makes processing large-sized data sets more
practicable.

B. Evaluation of DiPaRT

DiPaRT is implemented in Java, and deployed to an in-house
CDH 5.12 cluster consisting of 22 nodes with Hadoop 2.6
installed. We generated data for “Part” and “PartSupp” TPC-
H tables with a scale factor of 1000. By joining these tables
and keeping only numerical attributes (“size”, “retailprice”,
“qty”, “scost”), we produced a 4-dimensional 5GB data set
S consisting of 125 million products p. The set of weighting
vectors W that correspond to user preferences were generated
following a uniform (UN) distribution. We used data sets W

of various sizes from 5 to 50 GBs. The parameter k was set to
20, and the query point was selected again to have 40% result
ratio. DiPaRT was configured to run with 150 partitions (i.e.,
Reduce tasks) since this setting was identified empirically to
be the best in terms of execution time.

Fig. 2 demonstrates the performance results of DiPaRT,
when increasing the size of data set W . In Fig. 2a, the
total length of each bar corresponds to the execution time
of each experiment, and it is split to show the cost of Map
and Reduce phases individually. Overall, the total processing
time increases 2.5 times when using 10 times larger input sets
of weighting vectors. More specifically, the cost of reading
more data from disk in the Map phase naturally increases for
larger data sets. Moreover, the reverse top-k algorithm used
in the Map phase requires more processing time to evaluate
the higher number of (input) weighting vectors. As depicted
in Fig. 2b the effectiveness ratio of vector pruning is the
same for all experiments conducted. Also, the result set size
increases proportionally to the input size of data set W , since
the latter follows a UN distribution. This results to increased
processing cost of the Reduce phase of DiPaRT, for larger sizes
of input data, since it needs to process more weighting vectors.
Fig. 2c shows that the amount of data objects remains constant
during this set of experiments: approximately 2 million objects
survive the dominance-based pruning (indicated as S′i) and
they are replicated to all 150 partitions of our setup (indicated
as S′′i).

VI. RELATED WORK

A survey of efficient top-k query processing is presented
in [8]. Monochromatic and bichromatic reverse top-k queries
have been introduced in [15], [16]. Notable studies in this
area include: [17] for a branch-and-bound algorithm, [7] for
discovering similar products and [14] for monochromatic re-
verse top-k in higher dimensions. Also, multiple related topics
have been studied, such as why-not questions on reverse top-k
queries [5], a unified framework for rank-aware queries [2],
as well as reverse k-ranks query [19] and maximum rank
query [10]. Evaluation of multiple top-k queries has been
studied in [6] which avoids sequential calculation of top-k
queries by exploiting their common results, and in [18] which
is able to calculate a reverse top-k query, but requires an index
to be pre-built over the k-th ranked object of each query.

Several studies have proposed scalable processing of other
preference-aware queries, that operate “on top of” Hadoop
(i.e. without modifying its internal operations [3]). Our work
belongs to this category. Parallel skyline and reverse skyline
query evaluation is studied in [11], [12]. For top-k retrieval,
RanKloud [1] has been proposed, which uses statistics, cal-
culated at runtime, to compute a threshold for early termina-
tion. Parallel processing of top-k joins in MapReduce using
histograms that enable early termination has been studied
in [13]. In [9], algorithms for k-nearest neighbor joins in
MapReduce are proposed. Ranked spatial preference queries
using keywords in the context of MapReduce have been
studied in [4].

VII. CONCLUSIONS

In this paper, we introduce the problem of parallel and
distributed reverse top-k processing. We propose the first
parallel solution for this problem, which owes its efficiency
to pruning properties that reduce the amount of processed
data, without sacrificing the correctness of the result. In our
future work, we intend to research on more efficient pruning
techniques, aiming at more efficient and scalable algorithms.

VIII. ACKNOWLEDGMENTS

This research work has received funding from the Hellenic Founda-
tion for Research and Innovation (HFRI) and the General Secretariat
for Research and Technology (GSRT), under grant agreement No
1667 and under the HFRI PhD Fellowship grant (GA. no. 1059), and
from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 780754.

REFERENCES

[1] K. S. Candan, J. W. Kim, P. Nagarkar, M. Nagendra, and R. Yu.
RanKloud: scalable multimedia data processing in server clusters. IEEE
MultiMedia, 18(1):64–77, 2011.

[2] M. A. Cheema, Z. Shen, X. Lin, and W. Zhang. A unified framework for
efficiently processing ranking related queries. In Proceedings of EDBT.,
pages 427–438, 2014.

[3] C. Doulkeridis and K. Nørvåg. A survey of large-scale analytical query
processing in mapreduce. VLDB J., 23(3):355–380, 2014.

[4] C. Doulkeridis, A. Vlachou, D. Mpestas, and N. Mamoulis. Parallel and
distributed processing of spatial preference queries using keywords. In
Proceedings of EDBT, pages 318–329, 2017.

[5] Y. Gao, Q. Liu, G. Chen, B. Zheng, and L. Zhou. Answering why-not
questions on reverse top-k queries. PVLDB, 8(7):738–749, 2015.

[6] S. Ge, L. H. U, N. Mamoulis, and D. W. Cheung. Efficient all top-k
computation: A unified solution for all top-k, reverse top-k and top-m
influential queries. IEEE TKDE, 25(5):1015–1027, 2013.

[7] K. Georgoulas, A. Vlachou, C. Doulkeridis, and Y. Kotidis. User-centric
similarity search. IEEE Trans. Knowl. Data Eng., 29(1):200–213, 2017.

[8] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Computing
Surveys, 40(4):1–58, 2008.

[9] W. Kim, Y. Kim, and K. Shim. Parallel computation of k-nearest
neighbor joins using mapreduce. In Proceedings of BigData, pages
696–705, 2016.

[10] K. Mouratidis, J. Zhang, and H. Pang. Maximum rank query. PVLDB,
8(12):1554–1565, 2015.

[11] Y. Park, J. Min, and K. Shim. Parallel computation of skyline and reverse
skyline queries using MapReduce. PVLDB, 6(14):2002–2013, 2013.

[12] Y. Park, J. Min, and K. Shim. Efficient processing of skyline queries
using mapreduce. IEEE Trans. Knowl. Data Eng., 29(5):1031–1044,
2017.

[13] M. Saouk, C. Doulkeridis, A. Vlachou, and K. Nørvåg. Efficient
processing of top-k joins in mapreduce. In Proceedings of BigData,
pages 570–577, 2016.

[14] B. Tang, K. Mouratidis, and M. L. Yiu. Determining the impact regions
of competing options in preference space. In Proceedings of SIGMOD,
pages 805–820, 2017.

[15] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg. Reverse top-k
queries. In Proceedings of ICDE, pages 365–376, 2010.

[16] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg. Monochromatic
and bichromatic reverse top-k queries. IEEE TKDE, 23(8):1215–1229,
2011.

[17] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis. Branch-and-
bound algorithm for reverse top-k queries. In Proceedings of SIGMOD,
pages 481–492, 2013.

[18] A. Yu, P. K. Agarwal, and J. Yang. Processing a large number of
continuous preference top-k queries. In Proceedings of SIGMOD, pages
397–408, 2012.

[19] Z. Zhang, C. Jin, and Q. Kang. Reverse k-ranks query. PVLDB,
7(10):785–796, 2014.

	Introduction
	Preliminaries
	The Parallel & Distributed RTop-k Problem
	The DiPaRT Algorithm
	Overview
	Implementation

	Experimental Evaluation
	Limitations of Centralized Algorithms
	Evaluation of DiPaRT

	Related Work
	Conclusions
	Acknowledgments
	References

