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ABSTRACT
In this paper, we provide an in-depth study of the performance
of spatio-temporal queries in document-oriented NoSQL stores.
Existing NoSQL stores provide limited support for spatial data
and (quite often) no native support for spatio-temporal data. As
a result, the performance of query execution over large collec-
tions of spatio-temporal data is often suboptimal. We present
an approach for indexing spatio-temporal data, which is applica-
ble to any NoSQL store that provides key-based access to data
without modifications to its code, and we show how to generate
data partitions that preserve data locality. Moreover, we show
the impact of indexing and partitioning on the number of cluster
nodes that serve a query, and we discuss the advantages and dis-
advantages for different applications. We adopt a methodology
for the evaluation of spatio-temporal range queries, which can
serve as a benchmark. In our experiments, we focus on MongoDB
(as a representative NoSQL store that provides spatial support)
and we study the impact of indexing spatio-temporal data on
performance, using both real-life and synthetic data sets in a
medium-sized cluster.

1 INTRODUCTION
Big spatio-temporal data sets are collected every day at unprece-
dented rates [15, 17], due to emergent applications, such as fleet
management solutions, surveillance systems in maritime and
aviation, human and animal tracking, IoT sensor feeds, location-
based web search, and social networks with geotagged content.
These applications generate huge volumes of positional infor-
mation represented as points, which require scalable storage
and retrieval, so that data analysis techniques can be applied
to discover hidden spatio-temporal patterns. As a result, scal-
able spatio-temporal data management is a challenging research
topic, and efficient solutions are required for storage, indexing
and querying.

NoSQL stores [4, 7] comprise the state-of-the-art in scalable
storage to date. However, while support for spatial data is pro-
vided recently by an increasing number of NoSQL stores, this
is seldom the case for spatio-temporal data. In fact, even spa-
tial data access methods are not always optimized in today’s
mainstream NoSQL stores. While most relational DBMSs have
adopted R-trees [11] (or its variants [2, 16]) for efficient spatial
indexing, NoSQL stores with spatial support adopt GeoHashes to
map spatial data to one-dimensional (1D) values, which is then
indexed using traditional 1D indexes, such as B-trees [6] (see
Table 1). Our conjecture is that this decision relates to the cost of
building and maintaining a distributed R-tree. Consequently, the
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PostgreSQL (PostGIS extension) R-Tree
MySQL R-tree
Oracle R-tree

MariaDB R-tree
SQL Server B-tree

SQLite (SpatiaLite extension) B-tree
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MongoDB B-tree
Redis (Geo API) Sorted Set
DynamoDB B-tree
Elasticsearch BKD-tree

Neo4J B+Tree
Table 1: Spatial support in most popular relational and
NoSQL data stores

performance of existing solutions is suboptimal, when faced with
the challenge of efficient and scalable retrieval of spatio-temporal
data.

Our work is motivated by real-life applications, revolving
around fleet management operators in the urban domain, which
collect large volumes of positional data from GPS-equipped vehi-
cles daily. The specific use-cases that are supported by our work
relate to exploratory analysis of historical routes, using multiple
spatio-temporal queries of varying granularity. The retrieved
trajectories are analyzed for fleet cost reduction (by analyzing
the fuel consumption of historical routes), intelligent routing, as
well as for discovering movement patterns. The challenge is to
provide a scalable storage and spatio-temporal querying solution
for large volumes of historical mobility data. Unfortunately, ex-
isting industrial solutions are not optimized for spatio-temporal
querying at scale, thus fleet management operators apply data
analysis techniques only on recent subsets of their historical
database, while older data is kept in cold storage.

Motivated by these limitations, in this application paper, we
provide an in-depth study of querying spatio-temporal data at
scale, focusing on a document-oriented NoSQL store, namely
MongoDB. The choice of MongoDB is justified due to its wide
popularity among big data developers, and its maturity compared
to other competitive technologies. We explain the internal de-
tails of indexing and sharding, focusing on how spatial data is
supported, and eventually design a solution for spatio-temporal
data using the built-in indexes of MongoDB. Then, we propose
an alternative approach that uses the Hilbert space-filling curve
(which has been shown to have nice clustering properties [14])
to generate one-dimensional (1D) keys, which facilitates index-
ing of spatio-temporal data, and allows to preserve data locality
in the nodes of the MongoDB cluster. Moreover, this approach
can be implemented on top of MongoDB (and other key-based
NoSQL stores), thus being directly applicable for any application.



In particular, our approach has an effect on sharding, essentially
creating spatio-temporal data partitions that preserve data local-
ity. As we demonstrate in our empirical evaluation, this has a
profound impact on performance.

Our contributions can be summarized as follows:
• We propose an approach for efficient storage and querying
of spatio-temporal data based on Hilbert encoding, which
can be applied to any NoSQL store that supports key-based
access to data.

• We show that our approach achieves spatio-temporal data
locality across the distributed data partitions, and we dis-
cuss the advantages and disadvantages for different appli-
cations.

• We present a methodology for evaluating the impact of
spatio-temporal access to data at scale, which can also
serve as a benchmark for spatio-temporal queries inNoSQL
stores.

• We perform extensive experiments over a MongoDB in-
stallation on a public cloud, and we study the effect of
different metrics (such as keys and documents accessed,
nodes involved in query execution) on execution time
using both real and synthetic data.

The remainder of this paper is structured as follows: In Sec-
tion 2, we review related research efforts. Then, in Section 3,
we present the internal mechanisms of MongoDB for indexing
and handling spatial data. Section 4 outlines our approach for
indexing spatio-temporal data. Section 5 presents the results of
our empirical evaluation, and Section 6 concludes the paper.

2 RELATEDWORK
Spatial data indexing is a long-studied topic, with R-tree [11]
and its variants [2, 3, 16] being a prominent data structure in
centralized databases. Even though approaches for distributed
R-trees have been proposed [8], they have not been adopted by
today’s NoSQL stores, probably due to the high maintenance
cost in distributed settings and due to the gradually diminishing
performance after many inserts/updates.

2.1 One-dimensional Indexing of Spatial Data
Space-filling curves have extensively been used in spatial databases
in order to map high-dimensional data to one-dimensional val-
ues, which can be indexed using standard data structures, such
as the B-tree. Although many variants exist, notable examples
include the z-order and the Hilbert curve (depicted in Fig. 1). In
the context of data management and indexing, the objective of
all space-filling curves is to preserve data locality in the one-
dimensional space, so that spatial range queries can be trans-
formed to one-dimensional intervals of small length, in order to
reduce the number of false positives.

Even though the idea of GeoHashes was first proposed by
G.Niemeyer in 2008, it bears similarities with space-filling curves
(in particular with z-order), which have been known for decades.
MongoDB uses GeoHashes to store spatial data efficiently. The
idea of GeoHashing is to use a hierarchical subdivision of the
2D spatial domain, which uses multiple layers, with each layer
divided in a set of cells (or buckets). At the top layer, four buckets
exist which are derived by splitting each dimension in the mid-
dle. Then, each bucket at the top layer can be represented by 2
bits: 00, 01, 10, and 11. The hierarchical subdivision is performed
recursively, so at the next layer sixteen buckets exist and four
bits are used to address a bucket. As a result, any 2D spatial point
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Figure 1: Illustration of the Hilbert and z-order space fill-
ing curves

is assigned into a lower-level bucket uniquely, and the bit repre-
sentation of the bucket can be used as an indication about the
location of the point in the 2D space. The more layers, the higher
the precision of the respective location. Finally, GeoHashes use
a base32 String representation, instead of a bit representation,
which uses a 32-character set comprising the twenty-six letters
a–z, and the digits 2–7. As an example, Athens (Greece) has coor-
dinates (37.983810, 23.727539) which is represented as a GeoHash
of “swbb5ftzes” for precision of 10 characters. If we used lower
precision, the corresponding prefix would be obtained. For in-
stance, the GeoHash of Athens for precision of 5 characters is
“swbb5”.

2.2 Spatial and Spatio-temporal Queries in
MongoDB

NoSQL systems are widely used by modern applications for scal-
ability and high performance. For a recent survey on NoSQL
stores, we refer to [7] and also to the early work of Cattell [4].

There exists some work on studying the performance of built-
in mechanisms for spatial query support in MongoDB. Duan and
Chen [9] compare MongoDB against ArcGIS, in order to assess
the performance of the spatial extension of MongoDB against
a well-established GIS. More recently, Bartoszewski et al. [1]
compare MongoDB against PostGIS for spatial data. However,
both studies evaluate the systems on a single machine, which is
a limitation because it hides the impact of distributed storage on
query execution.

In [13], an experimental evaluation of MongoDB against Post-
greSQL is performed for spatio-temporal data. This is one of
the few studies that try to evaluate MongoDB’s capability in
terms of querying spatio-temporal data. However, their study
has some limitations, most notably the lack of data partitioning
in evaluation. Instead, a small cluster is used and all machines
contain replicas of the data set. In contrast, our work provides
an in-depth investigation of different aspects of spatio-temporal
data management, including indexing, data partitioning and load
balancing, in a much larger deployment of MongoDB in a sharded
cluster.

ST-Hash [10] follows an approach for spatio-temporal index-
ing on top of MongoDB. The main idea is to extend GeoHashes
in a way that time is also incorporated in a string representa-
tion of a one-dimensional value. This value can be decomposed
to obtain the corresponding spatial and temporal information.
Hence, a one-dimensional index is built on this string value, in
order to support efficient point and range searches. However,
the resulting encoding uses the year as a prefix, which is not



effective for certain query types. For example, queries with high
spatial selectivity but low temporal selectivity cannot exploit the
encoding, in order to efficiently identify which data blocks need
to be accessed.

SIFT [12] is an implementation of a distributed spatial index
upon MongoDB. The study focuses on the ingestion, indexing
and querying of highly-skewed spatial data. The basic data struc-
ture of SIFT is based on a tree where the spatial objects are
represented by their minimal bounding boxes. The tree structure
follows an approach so as to avoid any rebalancing, splitting and
merging operations when spatial objects are inserted to the index.
Nonetheless, the index is limited only to spatial queries.

3 BACKGROUND ON MONGODB
MongoDB [5] is a popular document-oriented NoSQL store that
stores data in the form of documents in collections. Documents are
binary JSON objects (BSON) that consist of a set of fields with
associated values. Values can be simple or complex, e.g., an array
or even a nested document. Each document is typically associated
with a key that uniquely identifies it. Collections are containers
for conceptually similar documents, however no restrictions are
imposed to the schema of each document. In MongoDB, collec-
tions are stored in databases which are namespaces for physical
grouping of collections.

3.1 Indexing in MongoDB
The main indexing structure used in MongoDB is the B-tree [6],
which supports both point and range queries. Apart from single
field indexes, which index documents based on a single field, a
compound index can be used to combine multiple fields (up to
32 fields), thus supporting queries with predicates on multiple
fields.

Compound indexes are organized hierarchically based on the
declared order of the index keys. In the case of two fields A and
B, the compound index first organizes the sorted values of A
in buckets, and then these buckets keep references to buckets
that hold the sorted values of B. An example is depicted in Fig. 2,
where A=hotelName and B=price, denoted as {hotelName:1,
price:1} in MongoDB. This indexing scheme has some impor-
tant consequences on performance. First, only queries with a
predicate on A can benefit from this index, since the value of the
predicate is necessary to start the traversal of the index and locate
buckets with relevant keys efficiently. Second, it is beneficial to
use as first index key a field that has many distinct values, in
order to effectively narrow down a search to few buckets only. As
a result, the order of index keys in a compound index determines
the performance of searches.

MongoDB holds by default a field for each document, called
_id. The field represents the identifier of a document and is
unique, acting as a primary key. The default type of its value is
ObjectId with 12 bytes. Its length consists of 4-byte timestamp
value based on ObjectId’s generation, a 5-byte random value and
a 3-byte incrementing counter which is initialized to a random
value. For the _id field, MongoDB maintains a single-field index
which cannot be dropped.

3.2 Indexing Spatial and Spatio-temporal
Data

Two variants of spatial indexes are supported in MongoDB; a 2d
index, which manages data on a two-dimensional plane, and a
2dsphere, which calculates geometries on the surface of the earth.

{hotelName:1, price:1}
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. . .
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Figure 2: Example of a compound index on fields
hotelName (string) and price (integer). The documents are
organized based on hotelName and then based on price.

Both of them are applied on fields whose values hold spatial data.
The values must be either GeoJSON objects or legacy coordinate
pairs which is a representation of the longitude and latitude val-
ues either with the usage of two-sized array or by embedding the
elements in a document. The spatial indexing mechanism in Mon-
goDB is based on GeoHash1, where a hierarchical subdivision
of the 2D spatial domain using multiple layers takes place. The
cells that result from the division of the space are represented
by bits. The more bits that represent a space, the higher the pre-
cision of the respective location. The GeoHash values that are
stored in the index consist of 26 bits by default. They can be set
up to 32 bits, performing better for spatial queries, but at the
expense of occupying more space in memory. A spatial index
can be combined with another field by means of the compound
index.

Unfortunately, indexing spatio-temporal data is not directly
supported inMongoDB. As a result, our premise would be to build
a compound index over the fields storing the spatial information
and the temporal information respectively.

3.3 Sharding
Sharding refers to data partitioning and assigning the obtained
partitions to MongoDB servers, also called shards. Specifically,
when sharding a MongoDB collection, its documents are dis-
tributed across shards based on a shard key. When defining a
shard key, MongoDB separates the range of shard key values into
smaller non-overlapping ranges with continuous keys. Each of
these ranges are associated with a chunk and contain a subset
of the sharded collection. Also, a chunk has a configurable size
which is 64MB by default, and if exceeded, it is split.

The configuration of small-sized chunks leads to a more even
distribution of data. However, migrations become more frequent,
adding overhead to the network and to the query routing layer
(known asmongos). Large-sized chunks enforce fewer migrations
at the expense of a less even distribution of data. MongoDB
achieves load balancing through the (re-)distribution of chunks
among shards. The Balancer runs in the background so as to
migrate chunks across the shards, targeting to achieve an even
distribution of chunks in the cluster.

Apart from the definition of the shard key, the sharding op-
eration of a collection requires the strategy type which can be
either range or hashed. With range sharding, it is highly proba-
ble that documents with similar shard keys will be in the same
chunk or shard, as depicted in the example in Fig. 3. This enables

1https://docs.mongodb.com/manual/core/geospatial-indexes/

https://docs.mongodb.com/manual/core/geospatial-indexes/
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Figure 3: Instance of chunks’ distribution that result from
a range sharded collection, on a field that contains values
from 1 to 99.

routing range queries to specific shards only. On the other hand,
in hashed sharding, chunks or shards are unlikely to contain doc-
uments with similar shard key values. This may serve well for
cases where broadcast operations are preferable.

Shard 1

32 44

1 14 14 32

Shard 2

80 85

78 8044 78

Shard 3

85 95 95 100

Zone1 – [1, 44) Zone2 – [44, 85)

Zone3 – [85, 100)

Figure 4: Instance of chunks’ distribution that result from
the definition and assignments of zones: [1, 44), [44, 85),
and [85, 100) on the shard key.

Sharding imposes the creation of a single or a compound index
on each shard, based on the field/s of the shard key. MongoDB
supports manual grouping of documents based on ranges of shard
key values through the concept of zones. A zone can be associated
with any shard. Similar to chunks, zones have lower inclusive
and upper exclusive boundaries and their covering ranges do
not overlap. By associating a zone with a shard or shards in an
already sharded collection, the cluster migrates the affected data
to the respective zones, if a collection is already sharded. Division
of chunks may occur so as to follow the data distribution scheme
determined from zone(s). If zones are set up before sharding a
collection, chunks are created for the defined zone ranges (and

additional chunks if necessary) to cover the entire range of the
shard key values. Fig. 4 shows an instance of storing the data
using zones. In the figure, each shard is assigned with one zone,
thus shards maintain more contiguous key ranges.

4 INDEXING AND PARTITIONING
SPATIO-TEMPORAL DATA

In this section, we present two alternative approaches for index-
ing spatio-temporal data, with different implications on parti-
tioning and eventually on the performance of query execution.
Our work focuses on point data, which covers many life real-
applications, and we leave other data types (such as polylines and
polygons) for future work. The first approach relies on the built-
in features of the spatial extension of MongoDB for indexing
and time-based sharding, therefore we consider it as a baseline
solution. Then, we propose an alternative approach that adopts
the Hilbert curve to map data to 1D values that will be stored
and indexed as a single field, also enabling sharding based on
spatio-temporal criteria.

4.1 Baseline Solution
4.1.1 Indexing. The baseline solution for efficient querying

of spatio-temporal data stored in MongoDB is via the usage of a
compound index that is built on the spatial and temporal fields
of the documents. Consider the following document structure:
{

"_id": 1,
"location": {

"type": Point,
"coordinates": [37.983810, 23.727539]

},
"date": ISODate("2018-10-01T08:34:40.067Z"),
...

}

The spatial field (location) is supported by the built-in 2dSphere
index, and is combined under the Compound index with the date
field. As a result, two possible solutions for spatio-temporal in-
dexing can be designed by exploiting directly the built-in features
of MongoDB, which differ on the order of fields: ({location,
date} and {date, location}). The former approach favors the
spatial dimension and organizes the buckets of the temporal
dimension under the ranges encoded by GeoHash values. The
latter approach favors the temporal dimension and organizes
the buckets of the encoded GeoHash values under the ranges
of the temporal values. As a result, the first approach works
well for queries with high selectivity in the spatial dimension,
whereas the second approach is more suitable for queries with
high selectivity in the temporal dimension.

4.1.2 Sharding. In order to adapt the baseline solution to a
distributed environment, a sharding key needs to be defined. We
opt for setting as shard key the date field. In this way, the spatio-
temporal queries are expected to access only specific shards based
on the temporal constraint, thus avoiding broadcasting, i.e., rout-
ing the query to all shards. In MongoDB, broadcast operations
occur if a query’s field constraints are not found in the shard key2.
It should be mentioned that the spatial field cannot participate
in the definition of the shard key, since the current version (4.4)
of MongoDB does not support a 2dsphere indexed field to be a
shard key or part of it.
2Broadcast operations may occur also for queries that include the shard key, de-
pending on factors such as the data distribution on nodes and the query selectivity.



By setting the date field as the shard key, it is very likely that
the documents will be distributed evenly among the shards, thus
resulting in a load-balanced cluster. Chunks are unlikely to be-
come jumbo (i.e., this refers to chunks that cannot be split, despite
becoming too large), because the values of the documents that
represent the temporal information ordinarily are of high cardi-
nality. However, it is still disturbing that the spatial dimension
cannot be used for sharding, since this would benefit queries with
spatial constraints. Instead, such queries will inevitably be routed
to all nodes that contain data that overlap with the temporal
constraint of the query.

It should also be noted that an index is automatically con-
structed on the shard key in MongoDB. Thus, the choice of the
date field for shard key results in two indexes: an index on the
temporal information and the compound index on space time.
During query processing, the query optimizer is responsible for
deciding which index is going to be used.

4.1.3 Data locality and zones usage. The baseline solution can
only guarantee data locality at the temporal level. This means that
documents associated with locations that exist near in space will
only be stored on the same node if they have similar timestamps.
Still, neighboring temporal intervals (corresponding to chunks)
may be stored in different nodes, due to the allocation of chunks
to nodes. To improve this shortcoming, we can define zones on
the sharding key (date), which will force neighboring temporal
intervals to be stored on the same node, thus improving data
locality with respect the temporal dimension.

In summary, sharding on the date field has the following two
drawbacks: (i) spatio-temporal queries may be routed to nodes
that fulfill the temporal range constraint but do not contain any
data that satisfy the spatial constraint, and (ii) queries that are
selective in the spatial dimension but refer to a large temporal
interval are forwarded to many of nodes of the cluster.

4.2 Solution based on Hilbert SFC
4.2.1 Indexing. Instead of relying on the built-in spatial in-

dexes, our approach is based on the 1Dmapping of data by means
of the Hilbert space-filling curve. Specifically, for each document,
the 1D Hilbert value is determined given its longitude and lati-
tude value, and then it is included as a new field (hilbertIndex)
that stores this value (of type long), as shown in the example
below.
{

"_id": 1,
"hilbertIndex": NumberLong(2345),
"location": {

"type": Point,
"coordinates": [37.983810, 23.727539]

},
"date": ISODate("2018-09-12T12:15:17.777Z"),
...

}

Even though any 1D mapping could be employed, we se-
lect the 1D mapping values based on the Hilbert space-filling
curve, as it has been shown to exhibit nice clustering and locality
properties [14]. This means that two documents with values of
hilbertIndex that differ slightly correspond to objects that are
spatially close to each other.

4.2.2 Sharding. Given this new spatial field (hilbertIndex)
and the date field, we set the shard key as {hilbertIndex,
date}, thus imposing spatio-temporal partitioning of data to

nodes. Consequently, the formation of the chunks is based both
on spatial and temporal information and each of them contains
documents that exist in specific spatial cells (1D values) for a cer-
tain time period. In case of spatio-temporal skewness in the data,
chunks are unlikely to become jumbo because of the cardinality
of the temporal field. The hilbertIndex field is more prone to
skewness, as it consists of finite long values and some of them
may appear with high frequency (i.e., correspond to frequently
visited locations). Thus, when a chunk surpasses its configured
size due to a unique hilbertIndex value, it is split on the tem-
poral dimension. The two new chunks will refer to the same 2D
region, covering different and non-overlapping time spans. The
definition of {hilbertIndex, date} as the shard key creates
by default a compound index for these fields on each shard. The
index constitutes a spatio-temporal index that uses the spatial
field first and then the temporal.

When querying such an index, not only the expected spatial
and temporal constraints are included in the query as in the base-
line approach, but also a constraint is added on the hilbertIndex
field. This constraint practically includes the set of spatial cells
that need to be examined, because they intersect with the query.
More concretely, such a query has the following document rep-
resentation in MongoDB:
{ $and: [

{ location: { $geoWithin: { $geometry: { type : Polygon,
coordinates: [ [ [23.7397867, 37.9698929],
[23.7492228,37.9698929], [23.7492228, 37.9761557],

[23.7397867,37.9761557 ], [23.7397867, 37.9698929] ] ]
} } } },
{date: { $gte: ISODate("2019-04-18T12:15:14.002Z") } },
{date: { $lte: ISODate("2019-04-24T07:34:43.777Z") } },
{ $or: [

{ hilbertIndex: { $gte: 7865, $lte: 12869 } },
{ hilbertIndex: { $gte: 13192, $lte: 13210 } },

{ hilbertIndex: { $in : [7794, 7799, 7856, 12911] } }
] }

] }

Similarly to the baseline approach, the spatio-temporal query
uses the MongoDB $geoWithin operator on the field that stores
the location as GeoJSON object. Also, the query specifies a spe-
cific temporal range using the $gte and $lte operators on the
temporal field. However, in the Hilbert-based approach, an addi-
tional constraint is posed on the specific spatial cells. Consecutive
values of cells are expressed as ranges, whereas non-consecutive
cell values are included as individual values. For this purpose,
an additional disjunctive operator ($or) is used in the query that
contains $gte and $lte operands to represent the ranges, and an
$in operator to include the individual cells.

4.2.3 Data locality and zones usage. The exploitation of both
spatial and the temporal information of documents for sharding
leads to a distribution of data to nodes that preserves the spatio-
temporal data locality. It is highly probable for the documents that
are both spatially and temporally near to be stored on the same
node. However, as already explained, this is not guaranteed for
data that belong to different chunks. This is because MongoDB
does not guarantee (by default) for each of the shards to store
chunks with continuous ranges.

Thus, data locality can be improved by defining zones. With
zones, documents with consecutive Hilbert values (disregarding
the temporal dimension) are likely to be placed in the same
shard; this is applied by defining and assigning zones to shards,
handling documents with specific ranges of Hilbert values. The



fact that the zones are defined only on the spatial information
of the documents cannot guarantee temporal locality, but only
for documents with nearby spatial locations. In contrast to the
baseline solution, in this approach, the spatial dimension affects
the number of the nodes that are to be accessed during query
processing.

4.2.4 Zones configuration. In order to assign a pre-defined
range of key values to a shard, a zone is specified by means
of a range of shard key values or a prefix of shard key values.
Zones are then assigned to certain nodes. This enables manual
partitioning of data in a controlled manner. In order to achieve
data locality regarding the spatio-temporal information of the
documents, we define as many zones as the number of available
shards, and assign one zone per shard.

The configuration of zones for the Hilbert-based approach is
performed on the hilbertIndex field (whereas the shard key
consists of the spatial and temporal field). Specifically, by using
the $bucketAuto aggregation pipeline stage of MongoDB, we get
the ranges of 𝑛 buckets, where 𝑛 is the number of shards. The
boundaries of buckets are formed with the goal of even distribu-
tion of documents to buckets. The ranges of the zones contain
documents that have a specific Hilbert value, without taking
account its temporal part. In other words, the zones contain doc-
uments that are located in specific cells for the whole timespan
in which they belong to. The resulting zones may not contain
exactly the same number of documents due to spatial data skew,
but we manage to preserve spatial locality.

For the baseline approach, the configuration of zones is per-
formed on the date field that constitutes the shard key, using
again the $bucketAuto aggregation pipeline stage. Each of the
buckets, contains the same number of documents. Based on these
ranges, the respective zones are created, and each one is assigned
to a single shard.

5 EXPERIMENTAL EVALUATION
In this section, the results of the experimental evaluation using
both real-life and synthetic data are presented.

5.1 Experimental Setup
Platform.All experimentswere performed inOkeanos-Knossos3,
an IaaS platform which is built and supported by GRNET4 for
research purposes. Okeanos-Knossos is a cloud service that pro-
vides virtual computing and storage services to the Greek re-
search and academic community. We have engaged from the
cloud service the following resources: 17 virtual machines, 68
CPUs, 136GB RAM, and 2.00 TB disk space.

MongoDB deployment. We deployed MongoDB (v 4.0.12)
on 17 virtual machines. From this set of nodes, 12 of the VMs
were used as (primary) shards, 3 of them as configuration servers
and the remaining 2 as query routers. Replica shards were not
used since the availability feature which mainly relates to node
failures is beyond the scope of this experimental study.

Each VM is equipped with 8GB RAM, x4 CPU cores and 30GB
system disk, running Ubuntu 16.04.6 LTS operating system. The
VMs that serve as shards have a mounted disk drive of 102GB
size. The VMs that serve as query routers have a mounted disk

3https://okeanos-knossos.grnet.gr/
4https://grnet.gr/

drive of 145GB size. The offered attachable disk of Okeanos-
Knossos platform is based on the Ceph5 storage system, which
is a distributed block level storage.

By default, MongoDB uses the WiredTiger storage engine that
integrates compression for collections and indexes. The compres-
sion on the collections is achieved through block compression,
supported through the snappy library. At the level of indexes,
prefix compression is used.

Data sets. Two types of data sets are used for the experimental
evaluation; real-life (R) and synthetic (S). The R set used in the
experimental evaluation is a subset of a proprietary data set that
is provided from a fleet management provider in Greece. The
subset used in our experiments is 13.7GB in the form of CSV files,
containing 15, 210, 901 records in total. The data set contains
trajectories of vehicles within Greece for a period of five months
(July to November 2018). Particularly, each record constitutes
a GPS trace of a specific vehicle and is comprised of 75 values.
The values represent information about the vehicle, its position
in space and time, the prevailing weather conditions, the road
network and the nearest points of interest. The coordinates of
the minimum bounding rectangle of the data set are: [(19.632533,
34.929233), (28.245285, 41.757797)]. We also use larger portions
of the same data set for our scalability study in Section 5.4, by
including more vehicles in the same spatio-temporal bounding
box.

The S set is a synthetic spatio-temporal data set, which con-
tains twice as many records as the R data set. It consists of two
CSV files where each one contains 4 columns (id, longitude,
latitude and date). The values of each column are generated
at random within predefined ranges and following the uniform
distribution. Its size is 1.6GB. The timespan of the synthetic data
set is the half of the covering time period of the R data set (i.e.,
it spans 2.5 months) and covers spatially a smaller area than R.
Specifically, the minimum bounding rectangle of the synthetic
data set is approximately 1.54% of the minimum bounding rec-
tangle area of the R set. The lower and upper coordinates of this
rectangle are: [(23.3, 37.6), (24.3, 38.5)].

Queries. In order to assess the performance of the approaches,
two categories of spatio-temporal queries are specified; those
with small and big spatial constraint, respectively. The categories
will be stated henceforth as 𝑄𝑠 (small) and 𝑄𝑏 (big) correspond-
ingly. Each category contains 4 queries with increasing temporal
constraint:𝑄𝑥

1 covers 1 hour,𝑄𝑥
2 1 day,𝑄𝑥

3 1 week and𝑄𝑥
4 covers

1 month, where 𝑥 ∈ {𝑠, 𝑏}. The queries do not overlap on the
temporal dimension; instead, each one pertains to a discrete time
span.

The spatial constraint of the small queries category is de-
fined as a rectangle with the following lower and upper bounds;
[(23.757495, 37.987295), (23.766958, 37.992997)]. The spatial rec-
tangle covers 526km2. The spatial constraint of the big queries
category is also defined as a rectangle, approximately 2, 603 times
larger than the covering area of the small queries category. Its
lower and upper bound coordinates are [(23.606039, 38.023982),
(24.032754, 38.353926)], covering 1, 369, 107km2.

Tables 2 and 3 report the number of retrieved documents for
each small and big queries, respectively. Clearly, small queries are
selective and retrieve relatively few documents. This corresponds
to queries for constrained space and time dimensions, aiming
at retrieval of very specific records. Instead, big queries, return
large result sets, and correspond to analytic queries that retrieve

5https://ceph.io/

https://okeanos-knossos.grnet.gr/
https://grnet.gr/
https://ceph.io/


Number of retrieved documents
Data set Q𝑠

1 Q𝑠
2 Q𝑠

3 Q𝑠
4

R 2 34 877 3,829
S 3 22 239 783

Table 2: The results of small queries for the real and the
synthetic data set

Number of retrieved documents
Data set Q𝑏1 Q𝑏2 Q𝑏3 Q𝑏4

R 580 5,640 113,890 431,788
S 2,575 61,193 608,685 1,891,291

Table 3: The results of big queries for the real and the syn-
thetic data set

large portions of the data set in order to perform some large-scale
data analysis task.

Metrics. The evaluation of the performance of the approaches
is based on the following metrics;

• Average execution time: corresponds to the execution time
required for processing the query and returning the query
result (averaged over queries).

• Documents examined: corresponds to the maximum num-
ber of documents that were accessed on any node during
query processing. This indicates the number of documents
that need to be fetched from disk during query processing.
We use the maximum as it corresponds to the highest cost
induced on any node, so it affects the execution time.

• Keys examined: shows the maximum number of keys ex-
amined in the underlying index over all nodes, in order to
find the necessary documents on disk. This indicates the
cost paid during query processing induced by accessing
the index.

• Nodes: reports the number of nodes that were accessed
during the execution of a query. This corresponds the
subset of nodes that participated in query processing.

Methodology. Based on the description of the subsections 4.1
and 4.2, we evaluate the following individual approaches which
cover variants both for indexing and partitioning:

• bslST : sharding based on time, and local indexing on shards
using compound index (location, date), where location
is based on 2dsphere index.

• bslTS: sharding based on time, and local indexing on shards
using compound index (date, location), where location
is based on 2dsphere index.

• hil: range sharding based on Hilbert curve in 2D (with
13-bit precision) and on time. The applied Hilbert curve
covers the entire globe. For local indexing on shards, a
compound index (hilbertIndex, date) is used for each
node.

• hil*: range sharding based on Hilbert curve in 2D (with
13-bit precision) and on time. The applied Hilbert curve
is limited to the spatial region of the data set. For local
indexing on shards, a compound index (hilbertIndex,
date) is used for each node.

With the bsl term we will refer to the sharding of the bslST
and bslTS approaches which is common for both of them. These
approaches differ only on their indexing part. Furthermore, the
hil method competes on equal terms bslST and bslTS approaches,

by taking account of the same spatial extent (whole world) and
by using 26 bits for storing the geospatial information of each
document on the respective indexes. We also tried hil* to investi-
gate if the use of a curve with the same number of bits but on
restricted spatial extent has any notable effect on performance.

The evaluation methodology followed in this experimental
study is described as follows. Each of the queries of the two
categories are executed 30 times, so as to ensure that the mea-
surements of the performance time of queries are in warm state
(where indexes have been already loaded in-memory). The exe-
cution time is calculated by averaging the last 10 executions of
each query.

When switching from one approach to the other, MongoDB is
re-installed from scratch so as to have a new deployment which
will contain only one sharded collection. For each approach, data
loading takes place. Both of the query routers are exploited for
this purpose and perform bulk insertion.

The approaches are tested under range sharding with different
settings: (i) with the default formation of the chunks, without
intervening on the distribution of the data over the shards (Sec-
tion 5.2, Figs. 5–8), and (ii) with the definition of zones where
data is grouped to shards given some pre-determined ranges
(Section 5.3, Figs. 9–12).

5.2 Evaluation of Approaches
hil vs. bsl. For both of the baseline variants (bslST and bslTS),
the number of nodes to which a query is routed increases when
the temporal constraint of a spatio-temporal query is increasing,
regardless of its spatial extent (Fig. 5c, 6c, 7c, 8c). This is not
effective for big queries that cover a large spatial area and refer
to a short time period (such as 𝑄𝑏

1 and 𝑄𝑏
2 in Fig. 6d and Fig. 8d).

In that case, a small number of nodes are burdened with search
operations, as a result of the multiple 1D mapping values that
represent the area. This is reflected in Figs. 6a, 6b, 8a and 8b
where the maximum number of examined keys and documents
are many more than in hil. The same applies for the 𝑄𝑏

3 query,
served by 2 and 6 nodes in the R and S set respectively, fewer
than the exploited nodes of hil method. The query𝑄𝑏

4 uses in the
baseline approaches 3 nodes more than in hil for both sets, with
more maximum examined keys and documents. In summary, hil
outperforms the baseline methods in terms of execution time in
the case of big queries.

Concerning the small queries, 𝑄𝑠
1 and 𝑄

𝑠
2 perform better for

hil in R set, since the maximum examined keys are fewer than in
bslST and bslTS (Fig. 5a). The same applies for the S set in terms
of the performance, but for the 𝑄2, a few more documents are
examined in hil than bslST (Fig. 7a). Still, 𝑄𝑠

2 performs a little
better in hil than bslST, as 1 node is used, thus without having
the small overhead of merging the results from the shards. The
opposite happens for the maximum examined documents (Fig. 5b
and 7b) for the same queries on the two sets, but the differences
are smaller than the respective cases of the examined keys. For
queries 𝑄𝑠

3 and 𝑄
𝑠
4, bslST outperforms hil. This happens because

more nodes contribute to the execution of the queries. Since
the queries are spatially small, fewer nodes are used in the hil
method.

hil vs. hil*. The performance of hil and hil* methods differ
in favor of hil for the big queries in both sets (Fig. 6d and 8d).
The same does not apply for the small queries (Fig. 5d and 7d),
excluding 𝑄1 for both sets and 𝑄2 for S set. In practice, hil* uses
higher precision in the spatial domain than hil, having more
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Figure 5: Default sharding ranges: Results for small queries and real (R) data
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Figure 6: Default sharding ranges: Results for big queries and real (R) data
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Figure 7: Default sharding ranges: Results for small queries and synthetic (S) data
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Figure 8: Default sharding ranges: Results for big queries and synthetic (S) data

indexed values on its spatial part. This results to a compound
index with more buckets but with fewer elements on each bucket.
It is expected, that such an index will perform better for spatio-
temporal queries that cover a small area, than an index with fewer
values on the spatial part. The difference in the performance is
greater when the temporal dimension is increasing, since many
of the buckets of the hil* that fulfill the spatial criteria will not
be accessed, because of their temporal boundaries, thus resulting
to fewer examined documents.

Discussion. In general terms, our experiments with the de-
fault distribution settings validate our intuition that the integra-
tion of the spatial information on the sharding offers performance
gain. This is especially evident for big queries where hil outper-
forms bsl. In the case of small queries, bsl performs better but at

the expense of using more nodes for query execution due to the
lack of data locality. This is going to have a negative effect in a
real system that processes thousands of queries at the same time,
since it would require that all nodes need to participate in the
execution of each query, which is not scalable.

5.3 Evaluation of Approaches with Zones
In this set of experiments, we only use hil (not hil*) since we
did not observe significant performance improvements. Many
of the experimental observations of Section 5.2 stand also for
the case of grouping data via zones. For instance, for all of the
big queries (Figs. 10d and 12d), hil outperforms both bslST and
bslTS, because the maximum number of examined documents is
smaller. Moreover, the required execution time of small queries
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Figure 9: Zone ranges: Results for small queries and real (R) data
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Figure 10: Zone ranges: Results for big queries and real (R) data
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Figure 11: Zone ranges: Results for small queries and synthetic (S) data
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Figure 12: Zone ranges: Results for big queries and synthetic (S) data

with a large timespan (𝑄3 and𝑄4) is smaller for the bslST than hil,
since more nodes are exploited, resulting to a smaller number of
maximum examined keys and documents for both sets (Figs. 9a,
9b, 11a and 11b).

It should be underlined that in the cases in which more than
two node were exploited for the performance of a query in the
experiments of Section 5.2, their corresponding application over
of the pre-defined zones use fewer nodes. This is expected because
of the grouping of zones on shards. For those cases, the query
performance drops to a small degree. Additionally, better data
locality is offered via zones as data is moved to specific shards,
adhering to the specified ranges.

Discussion. The usage of zones for each of the approaches
confirms that data locality is better than in the case of default

distribution of the documents among the shards. This is demon-
strated by the fact that fewer (or, in some cases, the same number)
of nodes take part in the processing compared to the case of no
zones.

In the baseline approaches, the 𝑄4 big queries in both R and S
data sets consume more time for their execution, as fewer nodes
are involved in query processing. The performance degradation
is also noticed for the𝑄𝑏

2 and𝑄𝑏
3 in the S set, whereas the respec-

tive queries gain performance in the R data set. Query 𝑄𝑏
1 gains

slightly in performance in all cases. Regarding the small queries,
in the bslST approach, query execution remains practically the
same. In the bslTS approach, the performance of 𝑄𝑠

4 gets worse
for both R and S data sets. The same applies for𝑄𝑠

3 and𝑄
𝑠
2, but in
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Figure 13: Scalability study for default sharding ranges: Results for Q𝑏
2 query on real data

the S data set. The performance of the remaining queries remains
the same.

For the Hilbert-based approach, the usage of zones affects
only the execution of𝑄𝑏

2 ,𝑄
𝑏
3 and𝑄𝑏

4 big queries, increasing their
execution time as a smaller number of nodes are involved in
query processing. An extra number of keys and documents have
to be searched. This is validated in both R and S data sets. The
remaining queries have similar performance, except for small
queries 𝑄𝑠

3 and 𝑄𝑠
4 in the R data set. Their execution time is

slightly decreased despite that the same number of nodes (namely
one node) is still exploited with zones. These queries have been
favored due to the change in the distribution of data by using
zones.

5.4 Scalability Study
In this experiment, we study the scalability of our approach for
larger data sets. For this purpose, we use larger portions of the
real R data set. In particular, we use 𝑅1 to denote the data set
used so far, whereas 𝑅2, 𝑅3, and 𝑅4 correspond to larger data sets,
by a scale factor of x2, x3, and x4 respectively. Table 4 reports the
size (in GB) and number of documents for each data set. Notice
that we keep the same spatio-temporal bounding box for the
data set, and we obtain larger instances of the data set by adding
data from more vehicles. We select query Q𝑏

2 in order to study
its performance when the size of the data set is increased. Also,
Table 5 reports the number of results for Q𝑏

2 for the different
data sets (𝑅1 – 𝑅4), showing that the same query retrieves more
results as the scale factor of the data set increases.

Data sets with scale factor
Data set info 𝑅1 𝑅2 𝑅3 𝑅4

Size (GB) 40.8 83.87 127.27 171.59
#documents (M) 15.2 31.4 47.7 63.9

Table 4: Information for instances 𝑅1 – 𝑅4 of the real data
set for different scale factor

Data sets with scale factor
Query 𝑅1 𝑅2 𝑅3 𝑅4
Q𝑏2 5,640 11,792 17,840 23,854

Table 5: Number of results for query Q𝑏
2 per scale factor of

the real data set

Fig. 13 demonstrates that our approach scales gracefully as
the size of the data is increased. This is particularly evident when

considering the execution time in Fig. 13d. Perhaps more im-
portantly, the gain of hil over the baseline methods increases
with the size of the data, which favors the performance of hil for
larger data collections. Figs. 13a and 13b show that hil needs to
access 1-2 orders of magnitude fewer documents and 2 orders
of magnitude fewer keys respectively. When comparing the two
baselines, bslTS performs better than bslST, since fewer docu-
ments are examined in the query’s refinement phase. Recall that
query Q𝑏

2 is selective on its temporal dimension (covering only
one day) and thus it is expected that bslTS will perform better
than bslST.

Discussion. This experiment demonstrates that the proposed
approach (hil) sustains its benefits over the baseline methods
when the size of the underlying data set is increased. This indi-
cates that our approach is scalable with data size.

6 CONCLUSIONS
In this paper, we provide an in-depth study of spatio-temporal
query execution in NoSQL stores, focusing on MongoDB due
to its popularity and support for spatial data. Our study indi-
cates that existing NoSQL stores do not natively support spatio-
temporal data, despite the ever-increasing number of applications
that produce massive spatio-temporal data daily. We also show
that a baseline approach based on built-in spatial indexes leads to
suboptimal performance in several cases. More importantly, we
investigate on the underlying reasons for this impact on perfor-
mance, and we elaborate on indexing and sharding techniques.
Furthermore, we propose an alternative approach which exploits
the Hilbert curve to map data to 1D values, which are then: (a)
indexed using a standard B-tree, and (b) used for partitioning
the data in a way that preserves spatio-temporal data locality
in shards. We conclude that this has an effect on the number
of nodes storing data that participate in query execution. Our
extensive experiments using both real-life and synthetic data in
a cluster of nodes support our conclusions.

With respect to future work, we believe that big data devel-
opers that work on spatio-temporal data will find interest in our
work, especially towards optimizing the performance of their ap-
plications. Also, we expect that future releases on NoSQL stores
will provide support for spatio-temporal data, therefore our work
is a small contribution in this direction. As a result, we intend
to extend our approach and investigate other methods for index-
ing and partitioning spatio-temporal data in distributed NoSQL
systems. Also, extending our work towards supporting more
complex data types (polylines and polygons) is of interest. Last,
but not least, we would like to expand our study using a workload
of queries, and propose an adaptive, workload-aware mechanism
for indexing and partitioning.
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A ADDITIONAL EXPERIMENTAL RESULTS
We provide additional details on the empirical evaluation, in-
cluding the bulk loading technique that we use, details on index

usage, as well as information of query distribution to nodes and
index size.

A.1 Data Loading
Data Loading. Both of the nodes that act as query routers, store
half of the CSV files of the data sets on their disks. Data loading
to the MongoDB store is carried out by accessing the CSV files
record-by-record and converting them directly to documents (bi-
nary JSON - BSON format). The conversion process does include
the formation of a GeoJSON object as a value of the location
field based on the longitude and latitude columns of the CSV
datasource files. It also includes the addition of the fields with
its respective values for all of the rest columns of the CSV files,
and the addition of the _id field which is handled automatically
by the MongoDB client driver. Note that for the Hilbert-based
approaches, a further action takes place, related to the calculation
of the 1D value. When a document is formed, it is added to a list.
The list is used for bulk insertion of documents for performance
reasons. The insertion is triggered after a specific batch of ele-
ments has been placed in the list, and we use 15K documents as
batch size in our experiments.

The size of the R and S set is a marginally smaller in the bsl
method than hil and hil* (Table 6), since its documents do not
integrate the hilbertIndex field, as hil and hil* do. Also, the
sizes of the methods in R set are much larger than S set because
they incorporate much more information due to the extra fields.

Approach
Data set bsl hil(*)

R 40.54 40.8
S 3.62 4.13

Table 6: Data size of real and synthetic data set in Mon-
goDB (in GB)

A.2 Querying the Data
The bslST and the bslTS approaches use as a sharding key the
date field which results to an additional index per node, apart
from the compound index. As a result, there are some cases where
the query optimizer chooses to process the spatio-temporal query
at hand using the index on date, rather than using the compound
index. This occurs only in the bslST approach, whereas in the
bslTS approach all queries are processed using the compound
index. Table 7 reports which index was used during query pro-
cessing for the bslST approach for all queries and both data sets.

Querying under the hil and hil* approaches, requires the de-
termination the cell of the indexes that cover the queries’ spatial
extent. Table 8 shows the average time execution of the Hilbert
algorithm for the identification of the cell indexes. When ap-
plying the hil* methodology, it is reasonable that the algorithm
requires more time than hil for specifying the 1D values, as the
total searching space is limited to a smaller surface, resulting to
increased precision. Furthermore, the execution time in the 𝑆
data set is increased when comparing the respective approaches
(except for𝑄𝑠 for hil) to the 𝑅 set, since the data exists in a smaller
2D space which increases the precision. This adds a burden to the
algorithm’s operation for identifying the 1D values. The figures
that follow in the next subsections, showing query execution
time, do not include the time for the determination of the 1D
values through the space filling curve.



 0

 200

 400

 600

 800

 1000

 1200

bslST bslTS hil hil*

T
o

ta
l 
s
iz

e
 o

f 
in

d
e

x
e

s
 (

M
B

)

Approach/Distribution

Rest indexes
Spatio-temporal indexes

(a) R set with default distribu-
tion
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Figure 14: Total size of indexes for R and S set with default distribution settings and zones

Distribution Data set 𝑄𝑥 𝑄𝑥
1 𝑄𝑥

2 𝑄𝑥
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Table 7: Usage of indexes for the bslST approach

 The used nodes exploit the compound index,#the used nodes exploit the date
index,G#mixed usage of the two indexes among the used nodes - the most delayed

node uses the compound index
𝑎 3 of the 11, 𝑏 3 of the 4 and 𝑐 5 of the 6 used nodes exploit the compound index

Methodology
hil hil*

Data set Q𝑠 Q𝑏 Q𝑠 Q𝑏

R 0.05 0.2 0.1 1.8
S 0.05 0.3 0.6 7.6

Table 8: Average time of Hilbert algorithm performance
in ms, for finding which 1D values should be searched on
the index

A.3 Index Size
The baseline methods have a few more main memory resources
requirements than hil for maintaining the indexes among the
shards. This is indicated in Figs 14a, 14b, 14c and 14d. Except
for the spatio-temporal indexes, bslST and bslTS maintain addi-
tionally two indexes which are created by default; one for the
_id field of every document, and the other for the date field, as it
acts as the sharding key. Whereas, hil and hil* methods maintain
as an additional index apart from the spatio-temporal, only the
one that is used for the _id field. Their spatio-temporal indexes
preexist by default due to the fact that its fields constitute the
sharding key. This, favors especially the hil method, since in all

cases, less memory is required for handling all the indexes than
bslST and bslTS.

For each of the methods, both in R and S set, the total size of
indexes among the shards increases when transiting from the
default data distribution to zone ranges. The change in size is af-
fected by the indexes’ size that handle the _id field. The insertion
of the documents in MongoDB database, takes place under the
default distribution settings, and the documents with similar con-
struction time have a larger common prefix part on the _id field.
Documents created in similar timestamps that get inserted in the
same shard contribute to the occupation of less main memory by
the _id index, since MongoDB uses prefix compression. With the
definition of zones, the documents that have been already stored
in the shards, are shuffled around the cluster, resulting to shards
with documents that have a smaller common part. This makes
the compression less effective and thus the sizes of _id indexes
are increased.

Moreover, the total size of the spatio-temporal indexes does
not change significantly when shifting from the default data
distribution state to zone ranges. The indexes have approximately
the same size. The same applies for the date indexes that exist in
bslST and bslTS methods; their size remains approximately the
same for both default distribution and zone ranges.

Comparing the hil and hil* total size of indexes, it is noticed
that in R set less main memory is required for hil* method
(Fig. 14a), whereas the opposite is true for the S set (Fig. 14c).
This is reasonable because for the S set, the cardinality of the 1D
values for hil* is much greater than hil method when contrasting
the same methods for the R set. In R set, many are the documents
that have the same 1D value as they are spatially skewed. The
values are grouped to buckets, covering each one a specific time
period. This saves memory especially when having smaller buck-
ets that still cover a specific time period; this is achieved through
hil*. On the other side, in S set, hil* is less efficient in terms of
memory occupation than hil because the 1D hilbert values that
are handled, are many more as the data is distributed uniformly
all over their minimum bound box. This makes the compression
less effective either, thus increasing the size of the hil* index.
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