
Parallel and Distributed Processing of Spatial Preference
Queries using Keywords

Christos Doulkeridis1, Akrivi Vlachou1, Dimitris Mpestas1,2, Nikos Mamoulis2

1Dept. of Digital Systems, University of Piraeus, Greece
2Dept. of Computer Science & Engineering, University of Ioannina, Greece

cdoulk@unipi.gr, avlachou@aueb.gr, dmpestas@teemail.gr, nikos@cs.uoi.gr

ABSTRACT

Advanced queries that combine spatial constraints with tex-
tual relevance to retrieve objects of interest have attracted
increased attention recently due to the ever-increasing rate
of user-generated spatio-textual data. Motivated by this
trend, in this paper, we study the novel problem of parallel
and distributed processing of spatial preference queries using
keywords, where the input data is stored in a distributed way.
Given a set of keywords, a set of spatial data objects and a
set of spatial feature objects that are additionally annotated
with textual descriptions, the spatial preference query using
keywords retrieves the top-k spatial data objects ranked ac-
cording to the textual relevance of feature objects in their
vicinity. This query type is processing-intensive, especially
for large datasets, since any data objects may belong to the
result set while the spatial range defines the score, and the
k data objects with the highest score need to be retrieved.
Our solution has two notable features: (a) we propose a de-
liberate re-partitioning mechanism of input data to servers,
which allows parallelized processing, thus establishing the
foundations for a scalable query processing algorithm, and
(b) we boost the query processing performance in each par-
tition by introducing an early termination mechanism that
delivers the correct result by only examining few data ob-
jects. Capitalizing on this, we implement parallel algorithms
that solve the problem in the MapReduce framework. Our
experimental study using both real and synthetic data in a
cluster of sixteen physical machines demonstrates the effi-
ciency of our solution.

1. INTRODUCTION
With the advent of modern applications that record the

position of mobile users by means of GPS, and the exten-
sive use of mobile smartphones, we have entered the era of
Big Spatial Data. The fact that an increasing amount of
user-generated content (e.g., messages in Twitter, photos in
Flickr, etc.) is geotagged also contributes to the daily cre-
ation of huge volumes of location-based data. Apart from

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

spatial locations, the data typically contain textual descrip-
tions or annotations. Analyzing and exploiting such tex-
tually annotated location-based data is estimated to bring
high economic benefits in the near future.

In order to extract useful insights from this wealth of Big
Spatial Data, advanced querying mechanisms are required
that retrieve results of interest from massively distributed
spatio-textual data. In this paper, we study an advanced
query type that retrieves data objects based on the textual
relevance of other (feature) objects in their spatial neigh-
borhood. In particular, given a keyword-based query, a set
of spatial data objects and a set of spatial feature objects
that are additionally annotated with textual descriptions,
the spatial preference query using keywords retrieves the top-
k spatial data objects ranked according to the textual rel-
evance of feature objects in their vicinity. This query is
generic, as it can be used to retrieve locations of interest
based on the relevance of Tweets in their vicinity, based on
popular places (bars, restaurants, etc.), and/or based on the
comments of other people in the surrounding area.

However, processing this query raises significant challenges.
First, due to the query definition, every data object is a po-
tential result and cannot be pruned by spatial or textual
constraints. Second, the distribution of data raises the need
to find a way to parallelize computation by assigning units of
work that can be processed independently from others. In
this paper, we address these technical challenges and pro-
vide the first solution to parallel/distributed processing of
the spatial preference query using keywords. Our approach
has two notable features: (a) we propose a method to paral-
lelize processing by deliberately re-partitioning input data,
in such a way that the partitions can be processed in parallel,
independently from each other, and (b) within each parti-
tion, we apply an early termination mechanism that eagerly
restricts the number of objects that need to be processed in
order to provide the correct result set.

In more detail, we make the following contributions in this
paper:

• We formulate and address a novel problem, namely
parallel/distributed evaluation of spatial preference queries
using keywords over massive and distributed spatio-
textual data.

• We propose a grid-based partitioning method that uses
careful duplication of feature objects in selected neigh-
boring cells and allows independent processing of sub-
sets of input data in parallel, thus establishing the
foundations for a scalable, parallel query evaluation
algorithm.

• We further boost the performance of our algorithm by
introducing an early termination mechanism for each
independent work unit, thereby reducing the process-
ing cost.

• We demonstrate the efficiency of our algorithms by
means of experimental evaluation using both real and
synthetic datasets in a medium-sized cluster.

The remainder of this paper is structured as follows: Sec-
tion 2 presents the preliminary concepts and necessary back-
ground. Section 3 formally defines the problem under study
and explains the rationale of our approach along with a brief
overview. The proposed query processing algorithm that re-
lies on the grid-based partitioning is presented in Section 4.
Section 5 presents the algorithms that use early termina-
tion. Section 6 analyzes the complexity of the proposed
algorithms. Then, in Section 7, we present the results of
our experimental evaluation. Related research efforts are
outlined in Section 8. Finally, in Section 9, we provide con-
cluding remarks.

2. PRELIMINARIES
In this section we give a brief overview of MapReduce and

HDFS, and define the type of queries we will focus on.

2.1 MapReduce and HDFS
Hadoop is an open-source implementation of MapReduce [4],

providing an environment for large-scale, fault-tolerant data
processing. Hadoop consists of two main parts: the HDFS
distributed file system and MapReduce for distributed pro-
cessing.
Files in HDFS are split into a number of large blocks which

are stored on DataNodes, and one file is typically distributed
over a number of DataNodes in order to facilitate high band-
width during parallel processing. In addition, blocks can be
replicated to multiple DataNodes (by default three replicas),
in order to ensure fault-tolerance. A separate NameNode is
responsible for keeping track of the location of files, blocks,
and replicas thereof. HDFS is designed for use-cases where
large datasets are loaded (“write-once”) and processed by
many different queries that perform various data analysis
tasks (“read-many”).
A task to be performed using the MapReduce framework

has to be specified as two steps. TheMap step as specified by
a map function takes some input (typically from HDFS files),
possibly performs some computation on this input, and re-
distributes it to worker nodes (a process known as “shuffle”).
An important aspect of MapReduce is that both the input
and output of the Map step is represented as key-value pairs,
and that pairs with same key will be processed as one group
by a Reducer. As such, the Reduce step receives all values
associated with a given key, from multiple map functions, as
a result of the re-distribution process, and typically performs
some aggregation on the values, as specified by a reduce
function.
It is important to note that one can customize the re-

distribution of data to Reducers by implementing a Parti-
tioner that operates on the output key of the map function,
thus practically enforcing an application-specific grouping
of data in the Reduce phase. Also, the ordering of values
in the reduce function can be specified, by implementing a
customized Comparator. In our work, we employ such cus-

Symbol Description

O Set of data objects
p Object in O, p ∈ O

F Set of feature objects
f Feature object in F , f ∈ F

f.W Keywords associated with feature object f

q(k, r,W) Query for top-k data objects
w(f, q) Textual relevance of feature f to query q

w(f, q) Upper bound of w(f, q)
dist(p, f) Spatial distance between p and f

τ(p) Score of data object p

τ Score of the k-th best data object
R Number of Reduce tasks
C = {C1, . . . , CR} Grid cells

Table 1: Overview of symbols.

tomizations to obtain a scalable and efficient solution to our
problem.

2.2 Spatial Preference Queries
The spatial preference query belongs to a class of queries

that rank objects based on the quality of other (feature) ob-
jects in their spatial neighborhood [12, 16, 17]. Inherently a
spatial preference query assumes that two types of objects
exist: the data objects, which will be ranked and returned
by the query, and the feature objects, which are responsi-
ble for ranking the data objects. As such, the feature ob-
jects determine the score of each data object according to
a user-specified metric. Spatial preference queries find more
applications in the case of textually annotated feature ob-
jects [14], where the score of data objects is determined by
a textual similarity function applied on query keywords and
textual annotations of feature objects. This query is known
as top-k spatio-textual preference query [14]. In this paper,
we study a distributed variant of this query.

3. PROBLEM STATEMENT AND OVERVIEW

OF SOLUTION

3.1 Problem Formulation
Consider an object dataset O of spatial objects p ∈ O,

where p is described by its coordinates p.x and p.y. Also,
consider a feature dataset F of spatio-textual objects f ∈ F ,
which are represented by spatial coordinates f.x and f.y,
and a set of keywords f.W.

The spatial preference query using keywords returns the
k data objects {p1, . . . , pk} from O with the highest score.
The score of a data object p ∈ O is defined by the scores
of feature objects f ∈ F in its spatial neighborhood. As
already mentioned, each feature object f is associated with
a set of keywords f.W. A query q consists of a neighborhood
distance threshold r, a set of query keywords q.W for the
feature set F , and the value k that determines how many
data objects need to be retrieved. For a quick overview of
the basic symbols used in this paper, we refer to Table 1.

Given a query q(k, r,W) and a feature object f ∈ F , we
define the non-spatial score w(f, q) that indicates the good-
ness (quality) of f as the similarity of sets q.W and t.W.
In this work, we employ Jaccard similarity for this purpose.
Obviously, the domain of values of w(f, q) is the range [0, 1].

5

10

5 10
x

y

p1
f2

p2

p3

p4

p5

f3
f1

f4 f5

f6

f8

f7

r=
1
.5

Figure 1: Example of spatial preference query using
keywords (SPQ).

Definition 1. (Non-spatial score w(f, q)): Given a query
q and a feature object f ∈ F , the non-spatial score w(f, q)
determines the textual relevance between the set of query key-
words q.W and the keywords f.W of f using Jaccard simi-
larity:

w(f, q) = |q.W∩f.W|
|q.W∪f.W|

The score τ(p) of a data object p is determined by the fea-
ture objects that are within distance r from p. More specif-
ically, τ(p) is defined by the maximum non-spatial score
w(f, q) of any feature object f in the r-neighborhood of p.
This range-based neighborhood condition is typically used
in the related work [12, 14, 16, 17]. Formally,

Definition 2. The score τ(p) of p based on feature dataset
F , given the range-based neighborhood condition r is defined
as:

τ(p) = max{w(f, q) | f ∈ F : d(p, f) ≤ r}

Example 1. Figure 1 depicts an example. The spatial
area contains both data objects (denoted as pi) and feature
objects (denoted as fi). The data objects represent hotels and
the feature objects represent restaurants. Assume a user is-
sues the following query: Find the best (top-k) hotels that
have an Italian restaurant nearby. Let us assume that k=1
and“nearby” is translated to r = 1.5 units of distance. Then,
the query is expressed as: Find the top-1 data object for
which a highly ranked feature object exists based on the key-
word “italian” and at a distance of at most 1.5 units.
Table 2 lists the locations and descriptions of both data

and feature objects. Only feature objects f1, f4 and f7 have
a common term with the user specified query (the keyword
“italian”). Thus, only f1, f4 and f7 will have a Jaccard score
other than 0. In the last column of Table 2 the Jaccard score
for all feature objects is shown. The score of each data object
is influenced only by the feature objects within a distance of
at most 1.5 units. In Figure 1 the circles with radius 1.5
range units and center each data object include the feature
objects that are nearby each data object and influence its
score. The actual score of a data object is the highest score
of all nearby feature objects. Data object p4 has a score of
0.5 due to feature object f1, data object p1 has a score of 1

Object X Y Keywords Jaccard

p1 4.6 4.8 - -
p2 7.5 1.7 - -
p3 8.9 5.2 - -
p4 1.8 1.8 - -
p5 1.9 9.0 - -
f1 2.8 1.2 italian,gourmet 0.5
f2 5.0 3.8 chinese,cheap 0
f3 8.7 1.9 sushi,wine 0
f4 3.8 5.5 italian 1
f5 5.2 5.1 mexican,exotic 0
f6 7.4 5.4 greek,traditional notInRange
f7 3.0 8.1 italian,spaghetti 0.5
f8 9.5 7.0 indian 0

Table 2: Example of datasets and scores for query
q.W = {italian}.

because of feature object f4 and data object p5 has a score of
0.5 due to feature object f7. Hence, the top-1 result is object
p1.

In the parallel and distributed setting that is targeted in
this paper, datasets O and F are horizontally partitioned
and distributed to different machines (servers), which means
that each server stores only a fraction (partition) of the en-
tire datasets. In other words, a number of partitions Oi ∈ O

and Fi ∈ F of datasets O and F respectively exists, such
that

⋃
Oi = O, Oi

⋂
Oj = ∅ for i 6= j, and

⋃
Fi = F ,

Fi

⋂
Fj = ∅ for i 6= j. Due to horizontal partitioning, any

(data or feature) object belongs to a single partition (Oi or
Fi respectively). We make no assumption on the number
of such partitions nor on having equal number of data and
feature object partitions. Also, no assumptions are made on
the specific partitioning method used; in fact, our proposed
solution is independent of the actual partitioning method
employed, which makes it applicable in the most generic
case.

Problem 1. (Parallel/Distributed Spatial Preference Query
using Keywords (SPQ)) Given an object dataset O and a fea-
ture dataset F , which are horizontally partitioned and dis-
tributed to a set of servers, the parallel/distributed spatial
preference query using keywords returns the k data objects
{p1, . . . , pk} from O with the highest τ(pi) scores.

3.2 Design Rationale
The spatial preference query using keywords (SPQ) tar-

geted in this paper is a complex query operator, since any
data object p may belong to the result set and the spa-
tial range cannot be used for pruning the data space. As a
result, the computation becomes more challenging and effi-
cient query processing mechanisms are required that can ex-
ploit parallelism and the availability of hardware resources.
Parallelizing this query is also challenging because any given
data object p and all feature objects within the query range
r from p must be assigned to the same server to ensure the
correct computation of the score τ(p) of p. As such, a re-
partitioning mechanism is required in order to assign (data
and feature) objects to servers in a deliberate way that al-
lows local processing at each server. To achieve the desired
independent score computation at each server, duplication
of feature objects to multiple servers is typically necessary.

Based on this, we set the following objectives for achieving
parallel, scalable and efficient query processing:

• Objective #1: parallelize processing by breaking the
work into independent parts, while minimizing feature
object duplication. In addition, the union of the results
in each part should suffice to produce the final result
set.

• Objective #2: avoid processing the input data in its
entirety, by providing early termination mechanisms
for query processing.

To meet the above objectives, we design our solution by
using the following two techniques:

• a grid-partitioning of the spatial data space that uses
careful duplication of feature objects in selected neigh-
boring cells, in order to create independent work units
(Section 4), and

• sorted access to the feature objects in a deliberate or-
der along with a thresholding mechanism that allows
early termination of query processing that guarantees
the correctness of the result (Section 5).

4. GRID-BASED PARTITIONING AND INI-

TIAL ALGORITHM
In this section, we present an algorithm for solving the

parallel/distributed spatial preference query using keywords,
which relies on a grid-based partitioning of the 2-dimensional
space in order to identify subsets of the original data that
can be processed in parallel. To ensure correctness of the
result computed in parallel, we re-partition the input data
to grid cells and deliberately duplicate some feature objects
in neighboring grid cells. As a result, this technique lays the
foundation for parallelizing the query processing and leads
to the first scalable solution.

4.1 Grid-based Partitioning
Consider a regular, uniform grid in the 2-dimensional data

space that consists of R cells: C = {C1, . . . , CR}. Our ap-
proach assigns all data and feature objects to cells of this
grid, and expects each cell to be processed independently of
the other cells. In MapReduce terms, we assign each cell
to a single processing task (Reducer), thus all data that is
mapped to this cell need to be sent to the assigned Reducer.
The re-partitioning mechanism operates in the following

way. Based on its spatial location, an object (data or feature
object) is assigned to the cell that encloses it in a straight-
forward way. However, some feature objects must be addi-
tionally assigned to other cells (i.e., duplicated), in order to
ensure that the data in each cell can indeed be processed
independently of the other cells and produce the correct re-
sult. More specifically, given a feature object f ∈ Cj and any
grid cell Ci (Ci 6= Cj), we denote by MINDIST (f, Ci) the
minimum distance between feature object f and Ci. This
distance is defined as the distance of f to the nearest edge
of Ci, since f is outside Ci. When this minimum distance is
smaller than the query radius r, i.e., MINDIST (f, Ci) ≤ r,
then it is possible that f is within distance r from a data
object p ∈ Ci. Therefore, f needs to be assigned (dupli-
cated) also to cell Ci. The following lemma guarantees the
correctness of the afore-described technique.

3

65

9

161513

14

12

1110

1 2

5

10

5 10
x

y

p1
f2

p2

p3

p4

p5

f3
f1

f4 f5

f6

f8

f7
r=
1
.5

4

7 8

Figure 2: Example of grid partitioning.

Lemma 1. (Correctness) Given a parallel/distributed spa-
tial preference query using keywords with radius r, any fea-
ture object f ∈ Cj must be assigned to all other grid cells
Ci(Ci 6= Cj), if MINDIST (f, Ci) ≤ r.

Figure 2 illustrates the same dataset as in Figure 1 and a
4x4 grid (the numbering of the cells is shown in the figure).
Consider a query with radius r = 1.5, and let us examine
feature object f7 as an example. Assuming that f7 has at
least one common term in its keyword set (f7.W) with the
user specified query (q.W), then f7 may affect neighboring
cells located near cell with identifier C14. It is fairly easy to
see that f7 needs to be duplicated to cells C9, C10, and C13,
for which MINDIST (f7, Ci) ≤ r, thus the score of data
objects located in these cells may be determined by f7.

Before presenting the algorithm that exploits this grid par-
titioning, we make a note on how to select an appropriate
grid size, as this affects the amount of duplication required.
It should also be noted that in our approach the grid is de-
fined at query time, after the value of r is known. Let α

denote the length of the edge of a grid cell. For now, we
should ensure that α ≥ r, otherwise excessive replication to
neighboring cells would be performed. Later, in Section 6,
we provide a thorough analysis on the effect of the grid cell
size to the amount of duplicated data.

4.2 Parallel Algorithm
We design a parallel algorithm, termed pSPQ, that solves

the problem in MapReduce. The Map phase is responsible
for re-partitioning the input data based on the grid intro-
duced earlier. Then, in the Reduce phase, the problem of
reporting the top-k data objects is solved in each cell inde-
pendently of the rest. This is the part of the query that
dominates the processing time; the final result is produced
by merging the k results of each of the R cells and returning
the top-k with the highest score. However, this last step can
be performed in a centralized way without significant over-
head, given that the number of these results is small because
k is typically small.

In more detail, in the Map phase, each Map task (Mapper)
receives as input some data objects and some feature objects,
without any assumptions on their location. Each Mapper is
responsible for assigning data and feature objects to grid
cells, including duplicating feature objects. Each grid cell

Algorithm 1 pSPQ : Map Function

1: Input: q(k, r,W), grid cells C = {C1, . . . , CR}
2: function MAP (x: input object)
3: Ci ← {Ci : Ci ∈ C and x enclosed in Ci}
4: if x is a data object then
5: x.tag ← 0
6: output 〈(i, x.tag), x〉
7: else
8: x.tag ← 1
9: if (x.W ∩ q.W 6= ∅) then
10: output 〈(i, x.tag), x〉
11: for (Cj ∈ C, such that MINDIST (x,Cj) ≤ r) do
12: output 〈(j, x.tag), x〉
13: end for
14: end if
15: end if
16: end function

corresponds to a single Reduce task, which will take as input
all objects assigned to the respective grid cell. Then, the
Reducer can accurately compute the score of any data object
located in the particular grid cell and report the top-k.

4.2.1 Map Phase

Algorithm 1 shows the pseudo-code of the Map phase,
where each call of the Map function processes a single ob-
ject denoted by x, which can be a data object or a feature
object. First, in line 3, the cell Ci that encloses object x is
determined. Then, if x is a data object, it is tagged (x.tag)
with the value 0, otherwise with the value 1. In case of a
data object, x is output using a composite key that consists
of the cell id i and the tag as key, and as value the entire
data object x. In case of a feature object, we apply a simple
pruning rule (line 9) to eliminate feature objects that do not
affect the result of the query. This rule practically eliminates
from further processing any feature object that has no com-
mon keyword with the query keywords, i.e., q.W∩f.W = ∅.
The reason is that such feature objects cannot contribute to
the score of any data object, based on the definition of our
query. This pruning rule can significantly limit the num-
ber of feature objects that need to be sent to the Reduce
phase. For the remaining feature objects that have at least
one common keyword with the query, they are first output
with the same composite key as above, and value the entire
feature object x. In addition, we identify neighboring cells
Cj that comply with Lemma 1, and replicate the feature ob-
ject in those cells too. In this way, we have partitioned the
initial data to grid cells and have performed the necessary
duplication of feature objects.
The output key-values of the Map phase are grouped by

cell id and assigned to Reduce tasks using a customized Par-
titioner. Also, in each Reduce task, we order the objects
within each group by their tag, so that data objects pre-
cede feature objects. This is achieved through the use of
the composite keys for sorting. As a result, it is guaranteed
that each Reducer accesses the feature objects after it has
accessed all data objects.

4.2.2 Reduce Phase

As already mentioned, a Reduce task processes all the
data assigned to a single cell and reports the top-k data
objects within the respective cell. The pseudo-code of the

Algorithm 2 pSPQ : Reduce Function

1: Input: q(k, r,W)
2: function REDUCE(key, V : objects assigned to cell

with id key)
3: Lk ← ∅
4: for (x ∈ V) do
5: if x is a data object then
6: Load x in memory Oi

7: score(x)← 0 // initial score
8: else
9: if w(x, q) > τ then
10: for (p ∈ Oi) do
11: if d(p, x) ≤ r then
12: score(p)← max{score(p), w(x, q)}
13: update list Lk of top-k data objects and τ

14: end if
15: end for
16: end if
17: end if
18: end for
19: for p ∈ Lk do
20: output 〈p, score(p)〉 // at this point:score(p) = τ(p)
21: end for
22: end function

Reduce function is depicted in Algorithm 2. First, all data
objects are accessed one-by-one and loaded in memory (Oi).
Moreover, a sorted list Lk of the k data objects pi with
higher scores τ(pi) is maintained. Let τ denote the k-th
best score of any data object so far. Then, for each feature
object x accessed, its non-spatial score w(x, q) (i.e., textual
similarity to the query terms) is compared to τ . Only if the
non-spatial score w(x, q) is larger than τ (line 9), may the
top-k list of data objects be updated. Therefore, in this case
we test all combinations of x with the data objects p kept in
memory Oi. If such a combination (x, p) is within distance r
(line 11), then we check if the temporary score of p denoted
by score(p) can be improved based on x (i.e., w(x, q)), and
if that is the case we check whether p has obtained a score
that places it in the current top-k list of data objects (Lk).
Line 12 shows how the score can be improved, however we
omit from the pseudo-code the check of score improvement
of p for sake of simplicity. Then, in line 13, the list Lk is
updated. As explained, this update is needed only if the
score of p is improved. In this case, if p already exists in
Lk we only update its score, otherwise p is inserted into Lk.
After all feature objects have been processed, Lk contains
the top-k data objects of this cell.

4.2.3 Limitations

The above algorithm provides a correct solution to the
problem in a parallel manner, thus achieving Objective #1.
However, in each Reducer, it needs to process the entire
set of feature objects in order to produce the correct re-
sult. In the following section, we present techniques that
overcome this limitation, thereby achieving significant per-
formance gains.

5. ALGORITHMS WITH EARLY TERMI-

NATION
Even though the technique outlined in the previous section

Algorithm 3 eSPQlen: Map Function (Section 5.1)

1: Input: q(k, r,W), grid cells C = {C1, . . . , CR}
2: function MAP (x: input object)
3: Ci ← {Ci : Ci ∈ C and x enclosed in Ci}
4: if x is a data object then
5: output 〈(i, 0), x〉
6: else
7: if (x.W ∩ q.W 6= ∅) then
8: output 〈(i, |x.W|), x〉
9: for (Cj ∈ C, such that MINDIST (x,Cj) ≤ r) do
10: output 〈(j, |x.W|), x〉
11: end for
12: end if
13: end if
14: end function

enables parallel processing of independent partitions to solve
the problem, it cannot guarantee good performance since it
requires processing both data partitions in a cell in their
entirety (including duplicated feature objects). To alleviate
this shortcoming, we introduce two alternative techniques
that achieve early termination, i.e., report the correct result
after accessing all data objects but only few feature objects.
This is achieved by imposing a deliberate order for accessing
feature objects in each cell, which in turn allows determining
an upper bound for the score of any unseen feature object.
When this upper bound cannot improve the score of the
current top-k object, we can safely terminate processing of
a given Reducer.

5.1 Accessing Feature Objects by Increasing
Keyword Length

The first algorithm that employs early termination, termed
eSPQlen, is based on the intuition that feature objects f

with long textual descriptions that consist of many key-
words (|f.W|) are expected to produce low scores w(f, q).
This is due to the Jaccard similarity used in the definition
of w(f, q) (Defn. 1), which has |q.W

⋃
f.W| in the denom-

inator. Based on this, we impose an ordering of feature
objects in each Reducer by increasing keyword length, aim-
ing at examining first feature objects that will produce high
score values w(f, q) with higher probability.
In more details, given the keywords q.W of a query q, and

a feature object f with keywords f.W, we define a bound
for the best possible Jaccard score that this feature object
can achieve as:

w(f, q) =

{
1 , |f.W| < |q.W|
|q.W|
|f.W|

, |f.W| ≥ |q.W|
(1)

Given that feature objects are accessed by increased key-
word length, this bound is derived as follows. As long as
feature objects f are accessed that satisfy |f.W| < |q.W|,
it is not possible to terminate processing, thus the bound
takes the value of 1. The reason is that when |f.W| < |q.W|
holds, it is possible that a subsequent feature object f ′ with
more keywords than f may have higher Jaccard score than
f . However, as soon as it holds that |f.W| ≥ |q.W| the
bound (best possible score) equals:

min{|q.W|, |f.W|}

min{|q.W|, |f.W|}+ |f.W| − |q.W|
=
|q.W|

|f.W|

Algorithm 4 eSPQlen: Reduce Function with Early Ter-
mination (Section 5.1)

1: Input: q(k, r,W)
2: function REDUCE(key, V : objects assigned to cell

with id key)
3: Lk ← ∅
4: for (x ∈ V) do
5: if x is a data object then
6: Load x in memory Oi

7: score(x)← 0 // initial score
8: else
9: if τ ≥ w(x, q) then
10: break
11: end if
12: if w(x, q) > τ then
13: for (p ∈ Oi) do
14: if d(p, x) ≤ r then
15: score(p)← max{score(p), w(x, q)}
16: update list Lk of top-k data objects and τ

17: end if
18: end for
19: end if
20: end if
21: end for
22: for p ∈ Lk do
23: output 〈p, score(p)〉 // at this point:score(p) = τ(p)
24: end for
25: end function

because in the best case the intersection of sets q.W and
f.W will be equal to: min{|q.W|, |f.W|}, while their union
will be equal to: min{|q.W|, |f.W|}+ |f.W| − |q.W|.

Recall that τ denotes the k-th best score of any data object
so far. Then, the condition for early termination during
processing of feature objects by increasing keyword length,
can be stated as follows:

Lemma 2. (Correctness of Early Termination eSPQlen)
Given a query q and an ordering of feature objects based on
increasing number of keywords, it is safe to stop accessing
more feature objects as soon as a feature object f is accessed
with:

τ ≥ w(f, q)

Based on this analysis, we introduce a new algorithm that
follows the paradigm of Section 4, but imposes the desired
access order to feature objects and is able to terminate early
in the Reduce phase.

5.1.1 Map Phase

Algorithm 3 describes the Map phase of the new algo-
rithm. The main difference to the algorithm described in
Section 4 is in the use of the composite key when objects
are output by the Map function (lines 8 and 10). The com-
posite key contains two parts. The first part is the cell id,
as previously, but the second part is a number. The second
part corresponds to the value zero in the case of data ob-
jects, while it corresponds to the length |f.W| of the keyword
description in the case of a feature object f . The rationale
behind the use of this composite key is that the cell id is
going to be used to group objects to Reducers, while the
second part of the key is going to be used to establish the

Algorithm 5 eSPQsco: Map Function (Section 5.2)

1: Input: q(k, r,W), grid cells C = {C1, . . . , CR}
2: function MAP (x: input object)
3: Ci ← {Ci : Ci ∈ C and x enclosed in Ci}
4: if x is a data object then
5: output 〈(i, 2), x〉
6: else
7: if (x.W ∩ q.W 6= ∅) then
8: output 〈(i, w(x, q)), x〉
9: for (Cj ∈ C, such that MINDIST (x,Cj) ≤ r) do
10: output 〈(j, w(x, q)), x〉
11: end for
12: end if
13: end if
14: end function

ordering in the Reduce phase in increased order of the num-
ber used. In this sorted order, data objects again precede
feature objects, due to the use of the zero value. Between
two feature objects, the one with the smallest length of key-
word description (i.e., fewer keywords) precedes the other in
the sorted order.

5.1.2 Reduce Phase

As already mentioned, feature objects with long keyword
lists are expected to result in decreased textual similarity
(in terms of Jaccard value). Thus, our hope is that after
accessing feature objects with few keywords, we will find a
feature object that has so many keywords that all remaining
feature objects in the ordering cannot surpass the score of
k-th best data object thus far.
Algorithm 4 explains the details of our approach. Again,

only the set of data objects assigned to this Reducer is main-
tained in memory, along with a sorted list Lk of the k data
objects with best scores found thus far in the algorithm. The
condition for early termination is based on the score τ of the
k-th object in list Lk and the best potential score w(f, q) of
the current feature object f (line 9).

5.2 Accessing Feature Objects by Decreasing
Score

In this section, we introduce an even better early termi-
nation algorithm, termed eSPQsco. The rationale of this
algorithm is to compute the Jaccard score in the Map phase
and use this score as second part of the composite key. In
essence, this can enforce a sorted order in the Reduce phase
where feature objects are accessed from the highest scoring
feature object to the lowest scoring one.
To explain the intuition of the algorithm, consider the

feature object with highest score. Any data object located
within distance r from this feature object is guaranteed to
belong to the result set, as no other data object can acquire a
higher score. This observation leads to a more efficient algo-
rithm that can (in principle) produce results when accessing
even a single feature object. As a result, the algorithm is
expected to terminate earlier, by accessing only a handful
of feature objects. This approach incurs additional process-
ing cost at the Map phase (i.e., computation of the Jaccard
score), but the imposed overhead to the overall execution
time is minimal.

Lemma 3. (Correctness of Early Termination eSPQsco)

Algorithm 6 eSPQsco: Reduce Function with Early Ter-
mination (Section 5.2)

1: Input: q(k, r,W)
2: function REDUCE(key, V : objects assigned to cell

with id key)
3: for (x ∈ V) do
4: if x is a data object then
5: Load x in memory Oi

6: else
7: if ∃p ∈ Oi : d(p, x) ≤ r then
8: output 〈p, w(x, q)〉 // here: w(x, q) = τ(p)
9: cnt++
10: if (cnt = k) then
11: break
12: end if
13: end if
14: end if
15: end for
16: end function

Given a query q and an ordering of feature objects {fi} based
on decreasing score w(fi, q), it is safe to stop accessing more
feature objects as soon as k data objects are retrieved within
distance r from any already accessed feature object.

5.2.1 Map Phase

Algorithm 5 describes the Map function, where the only
modifications are related to the second part of the composite
key (lines 5, 8, and 10). In the case of data objects, this
must be set to a value strictly higher than any potential
Jaccard value, i.e., it can be set equal to 2, since the Jaccard
score is bounded in the range [0, 1]. Thus, data objects
will be accessed before any feature object. In the case of
a feature object f , it is set to the Jaccard score w(f, q) of
f with respect to the query q. Obviously, the customized
Comparator must also be changed in order to enforce the
ordering, from highest scores to lowest scores.

5.2.2 Reduce Phase

Algorithm 6 details the operation of the Reduce phase.
After all data objects are loaded in memory, the feature ob-
jects are accessed in decreasing order of their Jaccard score
to the query. For each such feature object f , any data object
located within distance r is immediately reported as a result
within the specific cell. As soon as k data objects have been
reported as results, the algorithm can safely terminate.

6. THEORETICAL RESULTS
In this section, we analyze the space and time complexity

in the Reduce phase, which relate to the number of cells and
the number of duplicate objects.

6.1 Complexity Analysis
Let R denote the number of Reducers, which is also equiv-

alent to the number of grid cells. Further, let Oi and Fi

denote the subset of the data and feature objects assigned
to the i-th Reducer respectively. Notice that Fi contains
both the feature objects enclosed in the cell corresponding
to the i-th Reducer, as well as the duplicated feature objects
that are located in other neighboring cells. In other words,
it holds that

⋃R

i=1 |Fi| ≥ |F |.

A1

A2

A3

A4

Figure 3: Breaking a cell in areas based on the num-
ber of duplicates.

In the case of the initial parallel algorithm that does not
use early termination (Section 4), a Reducer needs to store
in memory the data objects |Oi| and the list of k data ob-
jects with best scores, leading to space complexity: O(|Oi|)
since |Oi| >> k. On the other hand, the time complexity is:
O(|Oi| · |Fi|), since in worst case for all data objects and for
each feature object the score is computed. In practice, when
using the early termination the processing cost of each Re-
ducer is significantly smaller, since only few feature objects
need to be examined before reporting the correct result set.
If we make the simplistic assumption that the work is

shared fairly in the R Reducers (e.g., assuming uniform dis-
tribution and a regular uniform grid), then we can replace

in the above formulas: |Oi| =
|O|
R

. Let us also consider
the duplication factor df of the feature dataset F , which is
a real number that is grid-dependent and data-dependent,
such that:

⋃R

i=1 |Fi| = df · |F |. Then, we can also replace in

the above formulas: |Fi| =
df ·|F |

R
. Thus, the processing cost

of a Reducer is proportional to: |Oi| · |Fi| =
|O|
R
·
df ·|F |

R
.

6.2 Estimation of the Duplication Factor
In the following, we assume that the size a of each side of

a grid cell is larger than twice the query radius, i.e., a ≥ 2r,
or equivalently r ≤ a

2
. This is reasonable, since we expect r

to be smaller than the size of a grid cell.
Depending on the area where a feature object is posi-

tioned, different number of duplicates of this object will be
created. Figure 3 shows an example of a grid cell. Given a
feature object enclosed into a cell, we identify four different
cases. If the feature object has a distance smaller than or
equal to r from any cell corner then the feature object is
enclosed in the area A1 that is depicted as the dotted area.
In this case, the feature object must be duplicated to all
three neighboring cells to the corner of the cell. If the fea-
ture object has a distance smaller than or equal to r from
two cell borders but not from a cell corner then the feature
object is enclosed in area A2. This area is depicted with
solid blue color defined by the four rectangles, but does not
include the circles. If located in A2, then only 2 duplicates
will be created (not on the diagonal cell). The third area is
A3 depicted as dashed area and corresponds to the feature
object that have a distance smaller than or equal to r from
only one border of the cell. In this case, only one duplicate
is needed. Finally, if the feature object is enclosed in the
remaining area of the cell (white area, called area A4), no
duplication is needed.

Obviously, since it holds r ≤ a
2
any feature object that

belongs to a cell is located in only one of these four areas.
Let |Ai| denote the surface of area Ai, and A denote the
area of the complete cell. Then:

• |A1| = 4 · πr2

4
= πr2

• |A2| = 4 · r2 − |A1| = (4− π)r2

• |A3| = 4 · (a− 2r)r

• |A4| = a2 − |A1| − |A2| − |A3| = (a− 2r)2

• |A| = a2

Let P (Ai) denote the probability that a feature object
belongs to area Ai. Then, if we assume uniform distribu-
tion of feature objects in the space, we obtain the following

probabilities: P (Ai) =
|Ai|
|A|

. Based on this, given n feature

objects enclosed in a cell, we can calculate the total number
of feature objects (including duplicates), denoted by n̂, of
the n feature points:

n̂ = 3 · n · P (A1) + 2 · n · P (A2) + n · P (A3) + n

and we can calculate the duplication factor df for this cell:
df = n̂

n
=

3 · P (A1) + 2 · P (A2) + P (A3) + 1 =

3πr2

a2 + 2 (4−π)r2

a2 + 4·(a−2·r)r

a2 + 1 =
πr2

a2 + 4·r
a

+ 1
Based on the above formula, we conclude that the worst
value of df is 3+ π

4
for the case of a = 2 · r and it holds that

1 ≤ df ≤ 3 + π
4
for any query range r such that a ≤ 2 · r.

Also, the duplication factor depends only on the ratio of the
cell size to the query range, under the assumption of uniform
distribution. Moreover, the formula shows that smaller cell
size α (compared to the query range r) increases the number
of duplicated feature objects. Put differently, a larger cell
size α reduces the duplication of feature objects.

6.3 Analysis of the Cell Size
Even though using a larger cell size α reduces the total

number of feature objects, it also has significant disadvan-
tages. First, it results in fewer cells thus reducing paral-
lelism. Second, the probability of obtaining imbalanced par-
titions in the case of skewed data is increased. Let us assume
that all R cells can be processed in a single round, i.e., the
hardware resources are sufficient to launch R Reduce tasks
in parallel1. In this case, the total processing time depends
on the performance of one Reducer, which as mentioned be-

fore depends on |Oi| · |Fi| =
|O|
R
·

df ·|F |

R
= |O| · |F | ·

df

R2 . If
we normalize the dataset in [0, 1] × [0, 1], then α ≤ 1 and
R = 1

a
. Then, |Oi| · |Fi| = |O| · |F | · df · a

4. In order to
study the performance of one Reducer while varying a, it
is sufficient to study df · a

4 since the remaining factors are
constant.

Based on the estimation of df in the previous section,

df · a
4 = (πr2

a2 + 4·r
a

+ 1) · a4 = π · r2 · a2 + 4 · r · a3 + a4.
If we consider r as a constant, then for increasing positive
values of a, the value of the previous equation increases,
which means that the complexity of the algorithm increases.
Thus, a smaller cell size α increases the number of cells

1We make this assumption to simplify the subsequent anal-
ysis, but obviously the number of cores can be smaller than
the number of grid cells, and in this case a Reducer will
process multiple cells.

(a) Flickr (FL). (b) Twitter (TW). (c) Clustered (CL).

Figure 4: Illustration of spatial distribution of datasets.

and parallelism, and also reduces the processing cost of each
Reducer.

7. EXPERIMENTAL EVALUATION
In this section, we report the results of our experimental

study. All algorithms are implemented in Java.

7.1 Experimental Setup
Platform. We deployed our algorithms in an in-house

CDH cluster consisting of sixteen (16) server nodes. Each
of the nodes d1-d8 has 32GB of RAM, 2 disks for HDFS
(5TB in total) and 2 CPUs with a total of 8 cores running
at 2.6 GHz. The nodes d9-d12 have 128GB of RAM, 4 disks
for HDFS (8TB in total) and 2 CPUs with a total of 12
cores (24 hyperthreads) running at 2.6 GHz. Finally, each
of the nodes d13-d16 is equipped with 128GB RAM, 4 disks
for HDFS (8TB in total), and 2 CPUs with a total of 16
cores running at 2.6GHz. Each of the servers in the cluster
function as DataNode and NodeManager, while one of them
in addition functions as NameNode and ResourceManager.
Each node runs Ubuntu 12.04. We use the CDH 5.4.8.1
version of Cloudera and Oracle Java 1.7. The JVM heap
size is set to 1GB for Map and Reduce tasks. We configure
HDFS with 128MB block size and replication factor of 3.
Datasets. In order to evaluate the performance of our

algorithms we used four different large-scale datasets. Two
real datasets are included, a dataset of tweets obtained from
Twitter and a dataset of images obtained from Flickr. The
Twitter dataset (TW) was created by extracting approxi-
mately 80 million tweets which requires 5.7GB on disk. Be-
sides a spatial location, each tweet contains several keywords
extracted from its text, with 9.8 keywords on average per
tweet, while the size of the dictionary is 88,706 keywords.
The Flickr dataset (FL) contains metadata of approximately
40 million images, thus capturing 3.5GB on disk. The aver-
age number of keywords per image is 7.9 and the dictionary
contains 34,716 unique keywords.
In addition, we created two synthetic datasets in order

to test the scalability of our algorithms with even larger
datasets. The first synthetic dataset consists of 512 mil-
lion spatial (data and feature) objects that follow a uniform
(UN) distribution in the data space. Each feature object is
assigned with a random number of keywords between 10 and
100, and these keywords are selected from a vocabulary of
size 1,000. The total size of the file is 160GB. The second
synthetic dataset follows a clustered (CL) distribution. We
generate 16 clusters whose position in space is selected at

Parameter Values

Datasets Real: {TW, FL}
Synthetic: {UN, CL}

Query keywords (|q.W|) 1, 3, 5, 10
Query radius (r) 5%, 10%, 25%, 50%
(% of side α of grid cell)
Top-k 5, 10, 50, 100

Grid size (FL, TW) 35x35, 50x50, 75x75, 100x100
Grid size (UN, CL) 10x10, 15x15, 50x50, 100x100

Table 3: Experimental parameters (default values in
bold).

random. All other parameters are the same. The total size
of the generated dataset is 160GB, as in the case of UN.
Figure 4 depicts the spatial distribution of the datasets em-
ployed in our experimental study. In all cases, we randomly
select half of the objects to act as data objects and the other
half as feature objects.

Algorithms. We compare the performance of the follow-
ing algorithms that are used to compute the spatial prefer-
ence query using keywords in a distributed and parallel way
in Hadoop:

• pSPQ : the parallel grid-based algorithm without early
termination (Section 4),

• eSPQlen: the parallel algorithm that uses early termi-
nation by accessing feature objects based on increasing
keyword length (Section 5.1), and

• eSPQsco: the parallel algorithm that uses early termi-
nation by accessing feature objects based on decreasing
score (Section 5.2).

For clarification purposes, we note that centralized process-
ing of this query type is infeasible in practice, due to the size
of the underlying datasets and the time necessary to build
centralized index structures.

Query generation. Queries are generated by selecting
various values for the query radius r and a number of random
query keywords q.W from the vocabulary of the respective
dataset2.
2We also explored alternative methods for keyword selection
instead of random selection, such as selecting from the most
frequent words or the least frequent words, but the execution
time of our algorithms was not significantly affected.

 0

 100

 200

 300

 400

 500

 600

35 50 75 100

T
im

e
 (

s
e

c
)

Grid size

pSPQ
eSPQlen
eSPQsco

(a) Varying grid size.

 0

 500

 1000

 1500

 2000

1 3 5 10

T
im

e
 (

s
e

c
)

Query keywords

pSPQ
eSPQlen
eSPQsco

(b) Varying number of query
keywords.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

10 25 50 100

T
im

e
 (

s
e

c
)

Range (percentage of cell size)

pSPQ
eSPQlen
eSPQsco

(c) Varying query radius.

 0

 100

 200

 300

 400

 500

 600

 700

5 10 50 100

T
im

e
 (

s
e

c
)

top-k parameter

pSPQ
eSPQlen
eSPQsco

(d) Varying k.

Figure 5: Experiments for Flickr (FL) dataset.

 50

 100

 150

 200

 250

 300

 350

 400

35 50 75 100

T
im

e
 (

s
e

c
)

Grid size

pSPQ
eSPQlen
eSPQsco

(a) Varying grid size.

 0

 100

 200

 300

 400

 500

1 3 5 10

T
im

e
 (

s
e

c
)

Query keywords

pSPQ
eSPQlen
eSPQsco

(b) Varying number of query
keywords.

 0

 100

 200

 300

 400

 500

 600

 700

10 25 50 100

T
im

e
 (

s
e

c
)

Range (percentage of cell size)

pSPQ
eSPQlen
eSPQsco

(c) Varying query radius.

 50

 100

 150

 200

 250

 300

 350

 400

5 10 50 100

T
im

e
 (

s
e

c
)

top-k parameter

pSPQ
eSPQlen
eSPQsco

(d) Varying k.

Figure 6: Experiments for Twitter (TW) dataset.

Parameters. During the experimental evaluation a num-
ber of parameters were varied in order to observe their effect
on each algorithm’s runtime. These parameters, reported in
Table 3, are: (i) the radius of the query, (ii) the number
of keywords of the query, (iii) the size of the grid that we
use to partition the data space, (iv) the number of the k

results that the algorithm returns, and (v) the size of the
dataset. In all cases, the number of Reducers is set equal to
the number of cells in the spatial grid.
Metrics. The algorithms are evaluated by the time re-

quired for the MapReduce job to complete, i.e., the job ex-
ecution time.

7.2 Experimental Results

7.2.1 Experiments with Real Data: Flickr

Figure 5 presents the results obtained for the Flickr (FL)
dataset. First, in Figure 5(a), we study the effect of grid size
to the performance of our algorithms. The first observation
is that using more grid cells (i.e., Reduce tasks) improves the
performance, since more, yet smaller, parts of the problem
need to be computed. The algorithms that employ early ter-
mination (eSPQlen, eSPQsco) are consistently much faster
than the grid-based algorithm pSPQ. In particular, eSPQsco
improves pSPQ up to a factor of 6x. Between the early ter-
mination algorithms, eSPQsco is consistently faster due to
the sorting based on score, which typically needs to access
only a handful of feature objects before reporting the correct
result. Figure 5(b) shows the effect of varying the number
of query keywords (|q.W|). In general, when more keywords
are used in the query more feature objects are passed to
the Reduce phase, since the probability of having non-zero
Jaccard similarity increases. This is more evident in pSPQ,
whose cost increases substantially with increased query key-
word length. Instead, eSPQsco is not significantly affected
by the increased number of keywords, because it still man-
ages to find the correct result after examining only few fea-

ture objects. This experiment demonstrates the value of the
early termination criterion employed in eSPQsco. In Fig-
ure 5(c), we gradually increase the radius of the query. In
principle, this makes query processing more costly as again
more feature objects become candidates for determining the
score of any data object. However, the early termination
algorithms are not significantly affected by increased values
of radius, as they can still report the correct result after ex-
amining few feature objects only. Finally, in Figure 5(d),
we study the effect on increased values of top-k. The chart
shows that all algorithms are not particularly sensitive to
increased values of k, because the cost of reporting a few
more results is marginal compared to the work needed to
report the first result.

7.2.2 Experiments with Real Data: Twitter

Figure 6 depicts the results obtained in the case of the
Twitter (TW) dataset. In general, the conclusions drawn
are quite similar to the case of the FL dataset. The algo-
rithms that employ early termination, and in particular eS-
PQsco, scale gracefully in all setups. Even in the harder se-
tups of many query keywords (Figure 6(b)) and larger query
radius (Figure 6(c)), the performance of eSPQsco is not sig-
nificantly affected. This is because as soon as the first few
feature objects with highest scores are examined, the algo-
rithm can safely report the top-k data objects in the cell. In
other words, the vast majority of feature objects assigned to
a cell are not actually processed, and exactly this character-
istic makes the algorithm scalable both in the case of more
demanding queries as well as in the case of larger datasets.

7.2.3 Experiments with Uniform Data

In order to study the performance of our algorithms for
large-scale datasets, we employ in our study synthetic datasets.
Figure 7 presents the results obtained for the Uniform (UN)
dataset. Notice the log-scale used in the y-axis. A general
observation is that eSPQsco that uses early termination out-

 1

 10

 100

 1000

 10000

10 15 50 100

T
im

e
 (

s
e

c
)

Grid size

pSPQ
eSPQlen
eSPQsco

(a) Varying grid size.

 1

 10

 100

 1000

 10000

 100000

1 3 5 10

T
im

e
 (

s
e

c
)

Query keywords

pSPQ
eSPQlen
eSPQsco

(b) Varying number of query
keywords.

 1

 10

 100

 1000

 10000

 100000

5 10 15 50 100

T
im

e
 (

s
e

c
)

Range (percentage of cell size)

pSPQ
eSPQlen
eSPQsco

(c) Varying query radius.

 1

 10

 100

 1000

 10000

 100000

5 10 50 100

T
im

e
 (

s
e

c
)

top-k parameter

pSPQ
eSPQlen
eSPQsco

(d) Varying k.

Figure 7: Experiments for Uniform (UN) dataset.

performs pSPQ by more than one order of magnitude. This
is a strong indication in favor of the algorithms employing
early termination, as their performance gains are more ev-
ident for larger datasets, such as the synthetic ones. Also,
the general trends are in accordance with the conclusions
derived from the real datasets. It is noteworthy that the per-
formance of eSPQsco remains relatively stable in the harder
setups consisting of many query keywords (Figure 7(b)) and
larger query radius (Figure 7(c)).

 1

 4

 16

 64

 256

 1024

 4096

64 128 256 512

T
im

e
 (

s
e

c
)

Dataset size (Million entries)

pSPQ
eSPQlen
eSPQsco

Figure 8: Scalability of all algorithms.

Moreover, Figure 8 shows the results obtained when we
vary the dataset size. This experiment aims at demon-
strating the nice scaling properties of our algorithms. In
particular, pSPQ scales linearly with increased dataset size,
which is already a good result. However, the algorithms that
employ early termination perform much better, since they
only examine few feature objects regardless of the increase
of dataset size. The experiment also shows that the gain of
the algorithms that employ early termination compared to
pSPQ increases for larger datasets.

7.2.4 Experiments with Clustered Data

Figure 9 presents the results obtained for the Clustered
(CL) dataset. It should be noted that such a data distri-
bution is particularly challenging as: (a) it is hard to fairly
assign the objects to Reducers, thus typically some Reduc-
ers are overburdened, and (b) excessive object duplication
can occur when a cluster is located on grid cell boundaries.
For the CL dataset, we observed that pSPQ results in ex-
tremely high execution time, thus it is not depicted in the
charts. For instance, for the default setup, it takes approx-
imately 48 hours for pSPQ to complete. This is due to the
fact that some Reducers are assigned with too many feature
objects and pSPQ has to perform O(|Oi| · |Fi|) score compu-
tations before termination. Still, the algorithms employing
early termination perform much better in all cases. Again,

when eSPQsco is considered, its performance is the best
among all algorithms, and it remains quite stable even in
the case of more demanding queries. This experiment veri-
fies the nice properties of eSPQsco, even for the combination
of large-scale dataset with a demanding data distribution.

8. RELATED WORK
In this section, we provide a brief overview of related re-

search efforts.
Spatial Preference Queries. The spatial preference

query has been originally proposed in [16] and later extended
in [17]. Essentially, this query enables the retrieval of inter-
esting spatial locations based on the quality of other facilities
located in their vicinity. Rocha et al. [12] propose efficient
query processing algorithms based on a mapping in score-
distance space that enables the materialization of sufficient
pairs of data and feature objects. Ranking of data objects
based on their spatial neighborhood without supporting key-
words has also been studied in [7, 15]. As already mentioned,
none of these approaches support keyword-based retrieval.

Spatio-textual Queries. Object retrieval based on a
combination of spatial and textual information is a highly
active research area recently. We refer to [3] for an inter-
esting overview of query types along with an experimental
comparison. The query studied in this paper has similari-
ties to spatio-textual joins. Spatio-textual similarity join in
a centralized setting is studied in [1], while a ranked version
of this join which does not require thresholds from the user
is studied in [10]. Partitioning strategies that also support
multi-threaded processing of spatio-textual joins are exam-
ined in [11]. The spatial group keyword query [2] retrieves a
group of objects located near the query location, such that
the union of their textual descriptions covers the query key-
words. In [5], the best keyword cover query is introduced,
which retrieves a set of spatial objects that together cover
the query keywords and additionally are located nearby. The
most relevant query to our work is the ranked spatio-textual
preference query proposed in [14]; in this paper, we study a
distributed variant of this query. Nevertheless, all the above
works target centralized environments, and their adaptation
to distributed, large-scale settings is not straightforward.

Spatio-textual Queries at Scale. The current trend
for scalable query processing is to employ a parallel process-
ing solution based on MapReduce. For a survey on query
processing in MapReduce we refer to [6]. To the best of
our knowledge, the area of spatio-textual query processing
at scale is not explored yet. Existing systems for parallel
and scalable data processing in the context of MapReduce
include SpatialHadoop [8]. However, SpatialHadoop targets

 1

 10

 100

 1000

 10000

10 15 50 100

T
im

e
 (

s
e
c
)

Grid size

eSPQlen
eSPQsco

(a) Varying grid size.

 1

 10

 100

 1000

 10000

 100000

1 3 5 10

T
im

e
 (

s
e
c
)

Query keywords

eSPQlen
eSPQsco

(b) Varying number of query
keywords.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

5 10 15 50 100

T
im

e
 (

s
e
c
)

Range (percentage of cell size)

eSPQlen
eSPQsco

(c) Varying query radius.

 0

 200

 400

 600

 800

 1000

 1200

5 10 50 100

T
im

e
 (

s
e
c
)

top-k parameter

eSPQlen
eSPQsco

(d) Varying k.

Figure 9: Experiments for Clustered (CL) dataset.

spatial data and is not optimized for spatial data annotated
with textual descriptions. Spatial joins (binary and multi-
way joins) in a MapReduce context are also studied in [18, 9]
respectively, but again no provision for textual annotations
exists. In [19], an approach for spatio-textual similarity join
in MapReduce is presented, where pairs of spatio-textual ob-
jects located within a user-specified distance and having tex-
tual similarity over a user-specified threshold are retrieved.
However, the query in [19] targets a single dataset (essen-
tially a self-join) without ranking and without keywords
as user input. Another substantial difference to our work
is that their solution requires multiple MapReduce phases
(jobs), whereas our algorithms consist of a single MapRe-
duce job. Finally, a recent work on ranked query processing
(top-k joins) in MapReduce is presented in [13], which em-
ploys early termination in a different way (in the Map phase)
from this work (in the Reduce phase).

9. CONCLUSIONS
In this paper we study the problem of parallel/distributed

processing of spatial preference queries using keywords. We
propose scalable algorithms that rely on grid-based
re-partitioning of input data in order to generate partitions
that can be processed independently in parallel. To boost
the performance of query processing, we employ early termi-
nation, thus reporting the correct result set after examining
only a handful of the input data points. Our experimental
study shows that our best algorithm consistently outper-
forms the remaining ones, and its performance is not signif-
icantly affected even in the case of demanding queries.

Acknowledgments

The work of C. Doulkeridis, A. Vlachou, and D. Mpestas has been

co-financed by ESF and Greek national funds through the Opera-

tional Program“Education and Lifelong Learning”of the National

Strategic Reference Framework (NSRF) - Research Funding Pro-

gram: Aristeia II, Project: ROADRUNNER. The work of N.

Mamoulis was supported by EU-funded Marie Curie Reintegra-

tion Grant project titled LBSKQ.

10. REFERENCES
[1] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual

similarity joins. PVLDB, 6(1):1–12, 2012.

[2] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi.
Collective spatial keyword querying. In Proc. of
SIGMOD, pages 373–384, 2011.

[3] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial
keyword query processing: An experimental
evaluation. PVLDB, 6(3):217–228, 2013.

[4] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. In Proc. of OSDI,
2004.

[5] K. Deng, X. Li, J. Lu, and X. Zhou. Best keyword
cover search. IEEE Trans. Knowl. Data Eng.,
27(1):61–73, 2015.

[6] C. Doulkeridis and K. Nørv̊ag. A survey of analytical
query processing in MapReduce. VLDB Journal, 2014.

[7] Y. Du, D. Zhang, and T. Xia. The optimal-location
query. In Proc. of SSTD, pages 163–180, 2005.

[8] A. Eldawy and M. F. Mokbel. SpatialHadoop: A
MapReduce framework for spatial data. In Proc. of
ICDE, pages 1352–1363, 2015.

[9] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V.
Subramaniam, and M. K. Mohania. Processing
multi-way spatial joins on MapReduce. In Proc. of
EDBT, pages 113–124, 2013.

[10] H. Hu, G. Li, Z. Bao, J. Feng, Y. Wu, Z. Gong, and
Y. Xu. Top-k spatio-textual similarity join. IEEE
Trans. Knowl. Data Eng., 28(2):551–565, 2016.

[11] J. Rao, J. J. Lin, and H. Samet. Partitioning
strategies for spatio-textual similarity join. In Proc. of
BigSpatial Workshop, pages 40–49, 2014.

[12] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and
K. Nørv̊ag. Efficient processing of top-k spatial
preference queries. PVLDB, 4(2):93–104, 2010.

[13] M. Saouk, C. Doulkeridis, A. Vlachou, and K. Nørv̊ag.
Efficient processing of top-k joins in MapReduce. In
Proc. of IEEE Big Data, 2016.

[14] G. Tsatsanifos and A. Vlachou. On processing top-k
spatio-textual preference queries. In Proc. of EDBT,
pages 433–444, 2015.

[15] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On
computing top-t most influential spatial sites. In Proc.
of VLDB, pages 946–957, 2005.

[16] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k
spatial preference queries. In Proc. of ICDE, pages
1076–1085, 2007.

[17] M. L. Yiu, H. Lu, N. Mamoulis, and M. Vaitis.
Ranking spatial data by quality preferences. IEEE
Trans. Knowl. Data Eng., 23(3):433–446, 2011.

[18] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. SJMR:
parallelizing spatial join with MapReduce on clusters.
In Proc. of CLUSTER, pages 1–8, 2009.

[19] Y. Zhang, Y. Ma, and X. Meng. Efficient
spatio-textual similarity join using MapReduce. In
Proc. of IEEE Web Intelligence, pages 52–59, 2014.

