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ABSTRACT

In this paper, given a product database and a set of cus-
tomer preferences, we address the problem of discovering a
bounded set of r diverse products that attract the interests
of different customers. This problem finds numerous ap-
plications in electronic marketplaces, e.g., for selecting the
products that are placed in the home page of an online shop.
Existing approaches to tackle this problem fall short because
they ignore customer preferences, and instead rely solely on
products’ attributes. We model this problem as a diversity
problem, where each product is represented by its reverse
top-k result set, and seek r products that maximize their
diversity value. Since the problem is NP-hard, we employ
a greedy algorithm that takes as input the reverse top-k
result sets of all candidate products. To further improve
performance, we also design a more efficient approximate
algorithm that does not require the computation of all re-
verse top-k sets. Our experimental evaluation demonstrates
the performance of the proposed algorithms and quality of
the selected diverse products.

1. INTRODUCTION
Top-k queries [17] help customers select a ranked set of k

products that best match their preferences out of an over-
whelmingly large collection of products. For a specific cus-
tomer, her preferences are expressed by means of a top-k
query, and highly ranked products in the top-k result are
more attractive to the customer. Thus, from the perspec-
tive of product sellers, the visibility and the potential market
of a product relates to the top-k queries for which the prod-
uct is highly ranked. Towards this direction, reverse top-k
queries [20] retrieve the set of user preferences for which a
product appears in their top-k lists. Reverse top-k queries
are very important for estimating the impact of the product
on the market, as the cardinality of the result set defines
an influence score [22] for the product, i.e., the number of
customers that value a particular product.
In this paper, we study the problem of finding the r most
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User Preferences:

User w[1] w[2] w[3] Top-k

Bob 0.1 0.2 0.7 p1
Tom 0.1 0.3 0.6 p1
Jack 0.3 0.1 0.6 p2
Max 0.8 0.1 0.1 p3

Products:

Product p[1] p[2] p[3] Reverse top-k

p1 1 2 6 Bob,Tom
p2 2 1 6 Jack
p3 6 5 2 Max

Table 1: Example of product database and user pref-
erences.

diverse products based on the user preferences. The goal is
to find a set of products that are attractive to a wide range
of customers with different preferences. For instance, con-
sider an electronic marketplace that wishes to advertise r

products on its front page aiming to attract as many new
customers as possible. Advertising diverse products that
are attractive to different existing customers increases the
probability that a new customer finds one of those products
attractive. The strategy of advertising the r most influential
products [22], i.e., the r products that attract the highest
total number of customers, does not necessarily lead to a set
of diverse products and may fail to attract many new cus-
tomers, since such products may be attractive to customers
with similar preferences.

Consider for example the set of user preferences and prod-
ucts depicted in Table 1, where maximum values in prod-
uct attributes are preferable. Assume that the goal is to
advertise two products for attracting new customers. Our
proposed method selects the r = 2 most diverse products
based on user preferences, which in our example is the set
{p1, p3}. This set is more probable to attract more new cus-
tomers because p1 and p3 satisfy more diverse preferences.
For example, a customer with similar preferences to Jack is
highly probable to be attracted also to p1, even though it is
not the best option for her on the market. This is because
both p1 and p2 satisfy users that have high preference for
the third dimension (expressed with a high weight w[3]). On
the other hand, p3 satisfies users that have totally diverse
preferences compared to p1 and p2, namely users such as
Max that prefer the first dimension.

In this paper, we introduce the problem of finding the
r most diverse products based on user preferences. The



user preferences are captured by the reverse top-k set of
each product. We model this problem as a dispersion prob-
lem [15] using as distance function the dissimilarity of the
reverse top-k sets. In this sense, the set of r objects with the
maximum diversity is returned to the user. Consequently,
the selected objects are appealing to many different cus-
tomers with dissimilar user preferences. Different from our
work, existing solutions for identifying diverse objects rely
solely on product attributes and largely overlook user pref-
erences [18]. On the other hand, approaches that identify r

objects with high total number of customers [12, 22], often
fail to discover truly diverse products that can be appealing
to new customers with different preferences than those of
the existing ones.
To summarize the contributions of this paper are:

• We study the novel problem of finding the r most di-
verse products based on user preferences. We model
this problem as a dispersion problem and define an ap-
propriate distance function that captures the dissimi-
larity of products based on their reverse top-k sets.

• As dispersion problems are known to be NP-hard [8],
we use a greedy algorithm that retrieves r diverse prod-
ucts, after computing the reverse top-k sets of the
products efficiently.

• To improve the performance of our algorithm, we pro-
pose an alternative algorithm that progressively com-
putes an approximation of the reverse top-k sets of a
limited set of candidate products and retrieves a set of
r products of high diversity.

• We present maintenance techniques for updating the
r most diverse products in the case of dynamic data
in a cost-efficient way. In addition, we generalize our
approach to support any set-based similarity function.

• We demonstrate the efficiency and achieved diversity
of our algorithms using both synthetic and real-life
data sets.

The rest of this paper is organized as follows: Section 2
reviews the related work. Section 3 provides the necessary
preliminaries, while in Section 4 we formally define the r-
Diversity problem. Thereafter, in Section 5, we present a
greedy algorithm applied on the reverse top-k sets. In Sec-
tion 6, we provide a more efficient algorithm that iteratively
computes an approximation of the reverse top-k sets and re-
fines the set of most diverse products. Section 7 addresses
the case of dynamic data, while Section 8 generalizes our
approach for set-based similarity functions. The experimen-
tal evaluation is presented in Section 9 and we conclude in
Section 10.

2. RELATED WORK
Reverse top-k queries. Vlachou et al. first introduced

the reverse top-k query in [20, 21]. Two versions of the
reverse top-k query were presented, namely monochromatic
and bichromatic. Based on the geometrical properties of the
monochromatic reverse top-k query, an algorithm for the two
dimensional case was proposed. For computing bichromatic
reverse top-k queries, an algorithm (called RTA) was pro-
posed that exploits the fact that similar queries share com-
mon results, in order to avoid evaluating the top-k queries

for all user preferences. Thereafter, several papers have
studied the problem of efficient reverse top-k computation.
An efficient algorithm for the two-dimensional monochro-
matic reverse top-k that relies on a novel index was pro-
posed in [4]. In [9], efficient evaluation of multiple top-k
queries is studied, which in turn enables the computation of
the reverse top-k set of a query point. The proposed method
avoids evaluating the top-k queries one-by-one by grouping
similar queries and evaluate them in a batch. This approach
is suitable for processing many reverse top-k queries at once.
An approach for processing a large number of continuous
top-k queries has appeared in [27]. The proposed framework
can be employed to process reverse top-k queries efficiently,
however it requires to build an index over the k-th ranked ob-
jects of each query that results in high pre-processing cost.
Recently, a novel branch-and-bound algorithm for reverse
top-k queries has appeared in [23], where both the object
data sets and the preferences set are indexed using an R-
tree.

Product impact and visibility. Several papers have
proposed methods that aim to quantify the impact of prod-
ucts in the market. DADA [11] aims to help manufactures
position their products in the market, based on three types
of dominance relationship analysis queries. Creating com-
petitive products has been studied in [24]. Customer iden-
tification and product positioning has been recently stud-
ied in [2], where the attractiveness of a product is defined
based on the concept of reverse skyline query. Nevertheless,
in these approaches user preferences are expressed as data
points that represent preferable products, whereas reverse
top-k queries examine user preferences in terms of weighting
vectors. Miah et al. [14] study a different problem, namely
how to select the subset of attributes that increases the visi-
bility of a new product. Product promotion is studied in [25,
26], where the aim is to find the most interesting regions for
promotion of a product. Only a few papers have proposed
methods for retrieving interesting products by using the re-
verse top-k queries. In [22], the influence of a product is de-
fined as the size of its reverse top-k set. Then, an algorithm
was presented to efficiently retrieve the m most influential
products. Discovering k products with maximum number
of customers has been studied in [12], where the number
of customers is estimated as the size of the reverse top-k
set. The problems studied in [12, 22] differ from the diver-
sity problem studied in this paper. Both approaches focus
on maximizing the number of existing customers and ignore
the similarity of the retrieved reverse top-k sets. These ap-
proaches fail to take into account the fact that attracting
new customers requires promoting products that are attrac-
tive to customers with diverse preferences. Koh et al. [10]
consider as products packages consisting of multiple com-
ponents. They study the problem of creating and selecting
packages from an existing pool of components such that the
number of potential customers is maximized. Similarly to
the aforementioned approaches the number of potential cus-
tomers is estimated using reverse top-k sets, yet they do not
study the diversity of the result set.

Diversity in databases. Many approaches have been
proposed for retrieving a set of diverse objects. Angel et
al. [1] study the problem of retrieving k documents relevant
to a query q, but are also diverse with each other. The di-
versity is computed based on document similarity metrics.
Drosou et al. [7] study the problem of finding the k most



Symbol Description

R
m m-dimensional dataspace

S Set of data objects
D Subset of S (D ⊆ S)
p,q Data objects/products (p, q ∈ S)
W Set of weighting vectors
w A weighting vector (w ∈ W )
fw Preference function associated with w

k Value of top-k
TOPk(w) Top-k data objects based on w

RTOPk(p) Reverse top-k result set for object p

cp Centroid of vectors in set RTOPk(p)
d(p, q) Cosine distance between centroids cp, cq
d(u,v) Cosine distance between vectors u,v

div(D) Diversity value of a set of objects D

D∗ Optimal solution of the r-Diversity problem
Dr(S) Approximate solution of the r-Diversity problem

Table 2: Overview of symbols.

diverse objects in a continuous data stream. DivDB, a sys-
tem that provides query result diversification, was presented
in [19]. Result diversification based on dissimilarity is stud-
ied also in [6]. Estimating the diversity of a set of points that
fulfill a special property has been studied mainly for select-
ing representative skyline points. For instance the diversity
of two skyline points can be defined as the distance between
them [16] or by using their sets of dominated points [13, 18].
More specifically, in [16] the authors define the set of rep-
resentative skyline to be a set of k objects that maximize
the minimum Euclidean distance between any two of the k

points. In [13], the representative skyline points are defined
based on the distinct number of dominated points. Valka-
nas et al. [18] estimate the diversity of two skyline points
by calculating the Jaccard distance of their respective sets
of dominated points. The main difference to our work is
that the definitions of diversity in the above approaches rely
on the attribute values only and cannot exploit the existing
user preferences.

3. PRELIMINARIES
Given a space R

m, we assume that we have a set of data
objects S where each object p ∈ S can be represented as an
m-dimensional point p = {p[1], . . . , p[m]} where p[i] ∈ R

+.
Each point p can be regarded as an object of a database and
each dimension of the point as a specific numerical attribute.
Without loss of generality, we assume that larger values are
preferable.
Given a scoring function f : S → R

+,a top-k query re-
turns the k objects of S with the best score. The scor-
ing functions used more often, are linear functions of the
form f(p) =

∑m

i=1 w[i]p[i] where w[i] ≥ 0. Such functions
can be represented by an m-dimensional weighting vector
w = {w[1], . . . , w[m]}. In such cases we denote the function
that results from w as fw. When w represents the pref-
erences of a user over the objects in S we call this vector
preference vector or simply preference.

Definition 1. (Top-k query [20]) Given a data set S ⊆
R

m and a vector w ∈ R
m the result set TOPk(w) of the

top-k query is a set of points such that TOPk(w) ⊆ S,
|TOPk(w)| = k and ∀p1, p2 : p1 ∈ TOPk(w), p2 ∈ S −
TOPk(w) it holds that fw(p1) ≥ fw(p2)

If we have a set of preferences W ⊆ R
m over a set of

products S ⊆ R
m then for a given product q, we say that

the result set of a reverse top-k query is a set RTOPk(q)
which consists of all the preference vectors w for which it
holds that q ∈ TOPk(w).

Definition 2. (Reverse top-k query [20]) Given a set
of points S, a point p, and a set of vectors W we say that a
vector w belongs in the reverse top-k set RTOPk(p) of point
p, if and only if ∃q ∈ TOPk(w) such that fw(p) ≥ fw(q).

We can also define the influence score of a data object p

as the cardinality of the set RTOPk(p). Table 2 provides an
overview of the most basic symbols used in this paper.

4. PROBLEM STATEMENT
Let p and q denote two products (data objects) from a

product database S. Also, given a set W of customer prefer-
ences (weighting vectors) and an integer k, let RTOPk(p) ⊆
W and RTOPk(q) ⊆ W denote the reverse top-k sets of
p and q respectively. We also define a distance function
d : S × S → R

+ as:
d(p, q) = fd(RTOPk(p), RTOPk(q))

that determines the dissimilarity of any two objects p and q

based on their corresponding reverse top-k sets. Notice that
this is a radically different approach from existing initiatives
that define the distance of two objects based on the objects’
attributes only.

The problem of selecting the r most diverse products from
a given set S can be viewed as a dispersion problem [7, 8, 15,
18], where the aim is to find r objects such that an objective
function of their distance d is optimized. The dispersion sum
problem maximizes the sum of pairwise distances between
the r selected products and it has been proved that it is
NP-hard by reduction from the clique problem [8].

Problem 1. (r-Diversity Problem). Given a set of
data objects S and a distance function d measuring the dis-
similarity between two objects, the r-Diversity problem is to
identify a subset D∗ ⊆ S such that:

D∗ = argmax
D⊆S
|D|=r

∑

p,q∈D
p 6=q

d(p, q)

The remaining challenge is to define an appropriate func-
tion fd that captures the dissimilarity of the reverse top-k
result sets. Hence, the function fd takes as input two sets
of weighting vectors and computes their dissimilarity. We
employ a function that relies on the concept of a centroid of
a set of vectors.

Definition 3. (centroid of RTOPk). Given a set of
data objects S, a set of weighting vectors W , and an object
p ∈ S such that RTOPk(p) 6= ∅, we define as the centroid
of p the vector:

cp =
1

|RTOPk(p)|

∑

w∈RTOPk(p)

w

Since each RTOPk set corresponds to exactly one data
point, the respective centroid corresponds to exactly one
data point as well. Therefore each data point can be mapped
to exactly one centroid vector and vice-versa.
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Figure 1: Example of dissimilarity function.

Definition 4. (Dissimilarity function fd). Given a
set of data objects S, a set of weighting vectors W , two ob-
jects p, q ∈ S, and their respective centroids cp and cq, the
distance of p and q is defined based on the cosine similarity
of the centroids:

fd(RTOPk(p), RTOPk(q)) = 1− cos(cp, cq)

The advantage of using the centroid cp instead of the ac-
tual set of vectors RTOPk(p) is that the centroid is a com-
pact and accurate representation of the set, which in turn
allows efficient processing of the dissimilarity function, com-
pared to other dissimilarity metrics that operate on sets of
arbitrary size. As a result, we use d(p, q) = 1 − cos(cp, cq)
as distance function in this paper1.

Example 1. Figure 1 shows an example of the reverse
top-k sets RTOPk(p) = {w1,w2,w3} and RTOPk(q) =
{w4,w5}, which belong to products p and q respectively. In
the Euclidean space, a linear top-k query can be represented
by a vector w [20, 21]. The magnitude of the query vector
does not influence the query result, as long as the direction
remains the same, therefore without loss of generality we as-
sume that

∑m

i=1 w[i] = 1. In the 2-dimensional space, all
weighting vectors belong to the line as depicted in Figure 1.
Moreover, top-k queries defined by similar weighting vec-
tors w are expected to produce similar result sets [20, 21].
Thus, the weighting vectors of the reverse top-k set of p are
expected to lie nearby on the line. Furthermore, for a hypo-
thetical weighting vector which lies on the line between w1

and w3, it is expected that p is highly ranked, and therefore it
is highly probable that this vector would belong to the reverse
top-k set of p.

The centroid of the weighting vectors captures the above
intuitions, and the angle between two centroids represents
the dissimilarity of the weighting vectors. Obviously, differ-
ent functions for set dissimilarity (hence also for measuring
distance) are supported by our approach, including (for in-
stance) the Jaccard similarity of the reverse top-k sets. Nev-
ertheless, the Jaccard similarity fails to capture the locality
of the weighting vectors.
Furthermore, we define the diversity div(D) of a set of

objects D ⊆ S. Notice that the set D∗ with the highest
diversity value div(D∗) among all r-sets of points in S, is the
optimal solution for Problem 1. The diversity value div(D)
is normalized in [0,1].

1In a slight abuse of notation, we also use d(u,v) = 1 −
cos(u,v) to denote the cosine distance between any two vec-
tors u and w.

Definition 5. (Diversity value) Given a set of points
S, a subset D ⊆ S of size r, and set of vectors W , we define
as diversity of D:

div(D)=
2

r(r − 1)

∑

p,q∈D
p 6=q

(1− cos(cp, cq))

5. ALGORITHMS WITH CENTROID COM-

PUTATION
The process of discovering r diverse products Dr(S) from

a set of products S consists of two main steps: (1) iden-
tifying a set C of candidate centroids that correspond to
candidate products for inclusion in the most diverse prod-
ucts (Section 5.1), and (2) selecting r of these candidates as
the most diverse products (Section 5.2).

Each candidate centroid in cp ∈ C corresponds to one
product p ∈ S and is the centroid vector of the RTOPk(p)
set of p. More formally C = {cp|p ∈ S,RTOPk(p) 6=
∅, cp is centroid of RTOPk(p)}. Obviously, products that
are not preferable for any customer are ignored.

Algorithm 1 describes the afore-described method and re-
turns a set of r diverse products. In line 1, the candidate
centroids C are computed using any of the methods that
will be described in Section 5.1. As the set of centroids C

may be large depending on the data distribution, a sample
R of fixed size s is created by picking centroids uniformly at
random (line 2). Finally, in line 3, the second step entails
solving the r-Diversity problem by applying a greedy algo-
rithm, called Diverse Product Selection Algorithm (DPSA),
on the sampled set of centroids R, as will be described in
Section 5.2.

Algorithm 1 r-Diverse Products

Input: S: set of products
W : set of weighting vectors
k: value of top-k and reverse top-k
s : size of initial sample
r : required number of diverse products

Output: Dr(S): the set of r most diverse products of S

1: C ← CandidateCentroids(S, W , k)
2: R←random subset of C with |R| = s

3: Dr(S)← DPSA(C,R, r)
4: return Dr(S)

5.1 Retrieving the Candidate Centroids
Different alternatives exist in order to compute the set C

of candidate centroids. In the following, we present three
alternative methods for determining the set C. Notice that
all methods produce an identical set C of centroids.

The most straightforward method is to perform a reverse
top-k query for each product p in S and compute the cen-
troid vector of each set RTOPk(p) using Definition 3. We
denote this approach Rtopk . Its processing cost is basically
determined by the computation of |S| reverse top-k queries.
Since any existing algorithm for reverse top-k processing can
be employed for the underlying reverse top-k computation,
this method is quite generic.

An improvement of the first method is derived based on
the observation that some products have empty reverse top-
k sets (i.e., they do not belong to the top-k result of any



weighting vector). Hence, it is possible to avoid processing
some reverse top-k sets. To achieve this, we exploit the pro-
gressive result generation of the algorithm in [22], which is
able to retrieve objects in decreasing order of the sizes of
their reverse top-k sets. We denote this method as Itopk
based on the fact that the algorithm [22] has been proposed
for retrieval of influential objects. As a result, we avoid pro-
cessing a reverse top-k query for objects with empty reverse
top-k sets, thus improving the performance of Rtopk .
The third method exploits the observation that it may be

more efficient to process all top-k queries, instead of pro-
cessing multiple reverse top-k queries. Thus, we perform a
top-k query for each preference vector w ∈W , which makes
straightforward the computation of the reverse top-k sets of
any data object, and hence also their respective centroids.
In fact, the top-k sets do not need to be maintained until all
top-k queries have been processed, but instead the centroids
can be calculated progressively. For each retrieved object in
the top-k result set, the centroid is updated by adding the
new vector w to its previous centroid, while also the number
of vectors per object is maintained. After finishing all top-k
queries, for each centroid the coordinates are divided by the
cardinality of the reverse top-k set. Since top-k queries for
all vectors in W are processed, we call this method all top-k,
i.e., Atopk . An advantage of Atopk is that the processing
cost in terms of top-k evaluations is fixed, namely |W | top-k
queries, in contrast to Rtopk and Itopk where in the worst
case the top-k evaluations can be up to |W | · |S|. Thus, the
efficiency of Atopk is influenced slightly by the cardinality
of S, in contrast to Rtopk which computes the reverse top-k
set even for products with empty reverse top-k sets.

5.2 Diverse Product Selection Algorithm
After having computed the centroid vectors of all non-

empty reverse top-k sets, the next step is to find the r most
diverse centroids and the products that they represent. As
already mentioned, the r-Diversity problem is defined as a
dispersion problem that is known to be NP-hard [8]. Thus,
computing the optimal solution for the r-Diversity problem
is not feasible even for relatively small data sets. Hence,
we employ an algorithm that efficiently computes an ap-
proximate solution of high quality [5]. More specifically, we
use a greedy algorithm, called Diverse Product Selection Al-
gorithm (DPSA), that iteratively selects the next centroid
that maximizes the value of the objective function. Its pseu-
docode is depicted in Algorithm 2.
Description. The algorithm takes as input the set of can-

didate centroids C, a random sample set R of the candidate
centroids that is going to be used, and an integer r which is
the desired number of most diverse products. It returns an
approximate set Dr(S) of the r most diverse products and
their centroids. The sample R is typically much smaller in
size than C, in order to reduce the cost of the first part of
the algorithm, which is to find the two most distant vectors
in R (line 2) and add them to the result set Dr(S) (line 3).
Then, the algorithm iteratively selects the next centroid cq
until r centroids have been retrieved (loop in line 4). Each
time, the selected centroid is the one that maximizes the
sum of distances from the already selected most diverse vec-
tors Dr(S). Notice that R is used only for the initialization
of Dr(S) (line 3), while the remaing centroids are selected
from C.
Complexity. The selection of the two most diverse prod-

Algorithm 2 Diverse Product Selection Algorithm DPSA()

Input: C : set of candidate centroids
R : sample of C
r : required number of diverse products

Output: Dr(S): the set of r most diverse products of S

1: cp1, cp2 ← cp1, cp2 : ∀cpi, cpj ∈ R : d(cp1, cp2) ≥
d(cpi, cpj)

2: C ← C − {p1, p2}
3: Dr(S)← {p1, p2}
4: while |Dr(S)| < r do

5: cq = argmax
c′q∈C

(∑
p∈Dr(S) d(c

′
q, cp)

)

6: Dr(S)← Dr(S)
⋃
{q}

7: C ← C − {q}
8: end while
9: return Dr(S)

ucts (seeds) has a cost O(|R|2) = O(s2). The remaining
part of the algorithm has a cost of O(r2|C|) and therefore
the total cost is equal to O(s2 + r2|C|). If no sample is used
(s = |C|) in the seed selection then the algorithm will have
a cost of O(|C|2).

Implementation details. In each loop iteration of the
DPSA algorithm (lines 4-8), the algorithm calculates the
sum of distances between a centroid vector cq ∈ C −Dr(S)
and the centroid vectors in Dr(S). As described above this
procedure has a cost of O(r2|C|). In the case of the cosine
distance we can reduce this cost to O(r|C|) by exploiting the
properties of the cosine function. As shown in Equation 1
the sum of distances of cq to all centroids in Dr(S) is equal

to |Dr(S)| −
c′q
|c′q|
· cDr(S). In that way it is only necessary to

calculate the centroid of Dr(S) before each loop iteration.

∑

p∈Dr(S)

d(c′q, cp) =
∑

p∈Dr(S)

1− cos(c′q, cp)

= |Dr(S)| −
c′q
|c′q|
·

∑

p∈Dr(S)

cp
|cp|

(1)

= |Dr(S)| −
c′q
|c′q|
· cDr(S)

6. SELECTIVE TOP-K ALGORITHM
The main drawback of the previous algorithm is that it

requires the computation of all centroids, which has a sig-
nificant processing cost regardless of the employed method
for candidate centroid computation. In particular, depend-
ing on the cardinality of W and S, the computation of the
centroids may be time-consuming. In order to alleviate this
shortcoming, in this section, we propose a method that fuses
the centroid computation with the selection of diverse ob-
jects. Our goal is to efficiently compute an approximation
of the centroids (by evaluating only a handful of carefully
selected top-k queries), which is sufficient to produce a set
of r products with high diversity.

6.1 Centroid Approximation
Conceptually, the proposed algorithm uses a series of iter-

ations, where each iteration consists of three parts: (1) select



a weighting vector wi in order to process the top-k query
it defines, (2) compute an approximation of the centroid-set
based on the results of all already processed top-k queries,
and (3) select diverse products by invoking the DPSA algo-
rithm (Section 5.2) with input the approximate centroid-set.
In each iteration, a top-k query based on wi is executed.
Some objects p ∈ TOPk(wi) may not have been retrieved
before and those are added to the centroid-set. For the re-
maining objects p ∈ TOPk(wi) the approximate centroid is
updated, since wi is added to their reverse top-k sets. In
fact, the reverse top-k sets are not maintained, but the cen-
troid of an object is computed progressively as in the case
of Atopk . Thus, in each iteration the centroid-set is only an
approximation of the candidate centroids C computed by
Algorithm 1 because (a) C may contain more centroids as
some objects may not have been retrieved yet and (b) the
centroids of an object p are estimated based on a limited
set of top-k queries only. However, in each iteration, the
candidate-set is enriched with the results of the next top-
k query. Additionally, a set of r diverse products Dr(S)
is computed based on the current set of centroids. Finally,
the selection of the next weighting vector to be processed
is based on maximizing the sum of distances to the set of
centroids defined by Dr(S).
The main idea of our algorithm is that the maximum

cosine distance (i.e., maximum diversity) of two objects is
bounded by the maximum cosine distance of any two weight-
ing vectors. Let us assume that w1 and w2 are the two
weighting vectors with the maximum cosine distance (the
most diverse). Let us further assume that there exist two
products p1 and p2 for which holds: RTOPk(p1) = {w1}
and RTOPk(p2) = {w2}. Then, it holds that for 2-Diversity
problem the optimal solution is {p1, p2} and their diversity
equals to 1 − cos(w1,w2), since cpi = wi. If more weight-
ing vectors belong to RTOPk(p1) then the diversity between
{p1, p2} decreases. Therefore, our algorithm starts by eval-
uating the top-k queries for the most diverse weighting vec-
tors. In each step, the most diverse weighting vector to the
current most diverse centroids is selected, as each centroid
may summarize several weighting vectors.

6.2 Algorithmic Description
Algorithm 3 shows the pseudocode of the proposed algo-

rithm that uses a limited set of top-k queries only. We call
this algorithm Selective Top-k Algorithm and denote it with
Stopk .
Description. The first major difference to Algorithm 1

is that the initial centroid computation is avoided. First,
the algorithm computes a random sample W ′ (of size s) of
W (line 1) and the two most dissimilar weighting vectors
w1 and w2 of W ′ are selected (line 2). Notice that the
sample W ′ is produced uniformly at random, thus it follows
the distribution of W and is used only for the initialization

of Ĉ. Applying the initialization step on W would result
in a cost of O(|W |2), while with the sample it is reduced
to O(|W ′|2). Next, the top-k queries for w1 and w2 are
processed and from the resulting merged set of products a

set Ĉ of centroids is computed (line 3). Notice that Ĉ is
computed based solely on the products retrieved thus far by
the two top-k queries. These centroids form the candidate
set for finding the most diverse products. In the following
step, the Algorithm 2 is invoked with input the candidate
set, and the two most diverse products are retrieved and

Algorithm 3 Selective Top-k Algorithm

Input: S: set of products
W : set of weighting vectors
k: value of top-k and reverse top-k
s : size of initial sample
r : required number of diverse products
steps : number of iterations (steps ≥ r)

Output: Dr(S): the set of r most diverse products of S

1: W ′ ←random subset of W with |W ′| = s

2: w1,w2 ← w1,w2 : ∀wi,wj ∈ W ′ : d(w1,w2) ≥
d(wi,wj)

3: Ĉ ← ComputeCentroids(
⋃

x=1,2 TOPk(wx))

4: Dr(S)← DPSA(Ĉ, Ĉ, 2)
5: i = 2
6: while i < steps do
7: i++

8: wi = argmax
w∈W

(∑
p∈Dr(S) d(cp,w)

)

9: Ĉ ← ComputeCentroids(
⋃

x=1...i TOPk(wx))

10: Dr(S)← DPSA(Ĉ, Ĉ,min(i+ 1, r))
11: end while
12: return Dr(S)

placed in Dr(S) (line 4). Note that Ĉ is much smaller than

C, thus DPSA algorithm is applied on Ĉ and no random
sample is required.

In each iteration, the most dissimilar weighting vector wi

to the centroid vectors cp (p ∈ Dr(S)) is selected (line 8).
For this wi, the respective top-k query is executed and the

candidate list Ĉ is updated as before (line 9). Then, the
DPSA algorithm is invoked again to produce a new set of
diverse products (line 10). The same procedure is repeated
for at least r steps. Notice that when the iteration counter i
is smaller than r, the algorithm produces i diverse products,
and only when i becomes greater than r does the algorithm
return r diverse products.

In order to improve further the approximation of the cen-
troids more iterations can be applied. The number of itera-
tions (steps) is a system parameter that captures an interest-
ing trade-off between the diversity of the result set and the
processing time. Small values of steps increase the efficiency
of the algorithm by reducing its processing time. In the ex-
perimental evaluation, we demonstrate that a small number
of iterations is sufficient to produce results with diversity
comparable to that of Algorithm 1, with significantly lower
processing cost. Notice that in the extreme case that the
number of iterations of Stopk is set equal to the cardinality
of W and also no sampling is used (s = |W |), the set of di-
verse products and number of required top-k queries will be
the identical with Atopk . Nevertheless, in this case, Stopk
will have the computational overhead of applying multiple
times the DPSA algorithm and finding the diverse weighting
vectors.

Example 2. Table 3 shows an example of the execution
of Stopk for r = 2. We assume that in the initialization
step vectors w1 and w2 are selected. Furthermore (assum-
ing k = 3), the top-3 results for the selected vectors are
depicted. After the initialization step, the sets of approxi-

mate centroids Ĉ contains 5 centroids (namely cp1 , ..., cp5),



Initialization step:

TOPk(w1) = p1, p2, p3, TOPk(w2) = p2, p4, p5
cp1 = w1, cp2 = 1

2
(w1 +w2),

cp3 = w1, cp4 = w2, cp5 = w2

First step:

TOPk(w3) = p3, p4, p5
cp1 = w1, cp2 = 1

2
(w1 +w2), cp3 = 1

2
(w1 +w3)

cp4 = 1
2
(w2 +w3), cp5 = 1

2
(w2 +w3)

Second step:

TOPk(w4) = p1, p2, p6
cp1 = 1

2
(w1 +w4), cp2 = 1

3
(w1 +w2 +w4),

cp3 = 1
2
(w1 +w3), cp4 = 1

2
(w2 +w3),

cp5 = 1
2
(w2 +w3), cp6 = w4

Table 3: Example of Stopk .

which correspond to the data points that have been retrieved

by at least one top-k query. Algorithm 2 is applied on Ĉ and
we assume that cp1 and cp4 as the two most diverse vectors.
In the first iteration of Stopk, the most diverse (according to
cp1 and cp4) weighting vector of W is selected. In this step,

w3 is selected and the approximate centroids Ĉ are updated
based on TOPk(w3) as depicted in Table 3. Again, Algo-

rithm 2 is applied on Ĉ and cp1 and cp4 are identified as
the two most diverse vectors. Stopk continues with a second

iteration by evaluating w4. In this step, cp6 is added to Ĉ as
it belongs to TOPk(w4). Again Algorithm 2 will be invoked
and the most dissimilar weighting vector of W will be se-
lected. The same procedure continues until steps iterations
has been executed.

Complexity. To perform a cost analysis of the algo-
rithm, we need to identify its basic cost factors. These fac-
tors include the initial computation of the two most dis-
similar vectors (O(s2)), the processing cost of steps top-k
queries, the cost of determining the next most dissimilar
weighting vector (O(steps · r · |W |)) (line 8), and the cost
induced by invoking the DPSA algorithm steps times. The
cost of processing steps top-k queries will always be much
cheaper than Algorithm 1, which needs to process W top-
k queries (in the case of Atopk) to perform the centroid
computation. It should also be noted that the calls to the
DPSA algorithm are much cheaper, because it operates on

Ĉ which is much smaller than C. Overall, the cost of the
algorithm is s2+ steps · r · |W |, since these are the dominant
cost factors, and the complexity is linear with respect to W

(O(steps · r · |W |)), when steps is small (r is typically small
anyway).

7. MAINTENANCE
In this section, we present techniques for maintaining the

diverse set of products in the case of dynamic data. In fact,
the methodology of Stopk (Algorithm 3) can be applied to
maintain the r-diverse products. We consider two cases: (1)
new products are inserted in the product database, and (2)
new preferences (in the form of weighting vectors) are added
in the customer preference database. Both cases actually
occur in online shops, when new products appear in the
market and new customer preferences are extracted from
social sites.

In order to support product insertions efficiently, we ex-
ploit the top-k queries that where computed during the com-

putation of Ĉ. Let W ∗ be the set of weighting vectors for
which the top-k queries have been computed. We main-
tain for each weighting vector w ∈ W ∗ the score of the
k-th product. When a new product pnew is inserted in the
database, we check for each query w ∈ W ∗ if pnew has a
better score than the k-th product. If this does not occur
for any w ∈W ∗, we can safely ignore pnew, as it does not af-
fect the determination of the diverse products. On the other
hand, if pnew becomes top-k for some weighting vector w,
we compute the new centroids only for the affected products
(i.e., pnew and the products pi that used to be at the k-th

rank, but were evicted by pnew) and update the set Ĉ. We

then apply DPSA algorithm on Ĉ and produce a new set of
diverse products. Note that in the first case, we can ensure
that the result set is the same as in the case where Stopk
would be executed on the updated data set, but this does
not hold for the second case. The similarity of the centroids
before and after the update can be used in order to decide
when the Stopk algorithm should be invoked to have a result
set of higher quality.

In order to be able to handle new preferences effectively,
during the computation of the diverse product we main-
tain the minimum (min) of all maximal sums of distances
between a centroid and any selected weighting vector (i.e.,
the expression in line 8 of Algorithm 3). In the case of a
new weighting vector wnew, we follow the same principle as
Algorithm 3 to decide whether the respective top-k query
should be evaluated. If

∑
p∈Dr(S) d(cp,wnew) is larger than

min, then the top-k query for wnew is computed, the set

of centroids Ĉ updated and DPSA algorithm is executed

on Ĉ to produce a new set of diverse products. Intuitively,
when vector wnew induces small changes to the set of cen-
troids, we do not need to recompute the r-diverse products
as wnew would not have been selected by Stopk in any case.
Again, the retrieved diverse products are not the same as if
Stopk would be executed on the updated weighting vector
set, therefore a threshold on the similarity of the centroids
before and after the update may trigger executing Stopk to
get a set of higher quality.

8. SUPPORTING OTHER SET-BASED SIM-

ILARITY FUNCTIONS
In general, our approach is applicable also for other func-

tions that compute the similarity between sets of vectors.
In such a case, our algorithms would not calculate centroids
(which is simply a representation of a set of weighting vec-
tors), but would instead directly operate on the reverse top-

k sets of products. Following this line of thought, Ĉ would
represent a set of approximate reverse top-k sets (instead
of a set of centroids) and the computation of the most di-
verse sets becomes independent of the similarity or distance
function.

In more technical terms, Algorithm 1 would not calcu-
late centroids but would only maintain the reverse top-k
sets, and Algorithm 3 would not compute centroids incre-
mentally but would simply update the approximate reverse
top-k sets of products based on the executed top-k queries.
Then, Algorithm 2 can be directly applied to the reverse
top-k sets.

For instance, one popular similarity function is the Jac-



Parameter Values

Datasets
UN, CO, AC, CL
NBA, HOUSE

Data cardinality

1K, 5K, 10K (Diversity Quality)
5K, 10K, 30K (Scalability Analysis)
100K, 200K, 500K (Sensitivity Analysis)
17265, 127930 (Real Datasets)

Weight cardinality
1K, 5K, 10K (Diversity Quality)
5K, 10K, 30K (Scalability Analysis)
100K, 200K, 500K (Sensitivity Analysis)
100K, 200K, 500K (Real Datasets)

# results(r)
3, 4, 5 (Diversity Quality)
10 (Scalability Analysis)
5, 10, 30 (Sensitivity Analysis)
5, 10, 30 (Real Datasets)

# top-k results(k)

10, 20 (Diversity Quality)
5, 10, 30, 50 (Scalability Analysis)
5, 10, 30, 50 (Sensitivity Analysis)
5, 10, 30, 50 (Real Datasets)

# dimensions(m)
3 (Diversity Quality)
3 (Scalability Analysis)
3, 4, 5, 6 (Sensitivity Analysis)

Table 4: Parameters (default values in bold).

card similarity, which is defined as the size of the intersection
divided by the size of the union of two sets. Our approach
readily supports the Jaccard similarity on reverse top-k sets,
as outlined above. Notice that the advantage of the cosine
similarity compared to Jaccard for the problem of finding di-
verse products is that it returns more fine-grained similarity
values. For example, in the case of disjoint sets, the Jaccard
similarity value equals to zero, and does not distinguish be-
tween the sets. Instead, the cosine similarity of the centroid
vectors allows us to distinguish between them by returning
a non-zero value. Moreover in the case of a set A that is
a subset of another set B (A ⊆ B), the Jaccard similar-

ity is equal to |B|−|A|
|B|

which can get arbitrarily close to the

maximum value. In such cases, using the Jaccard similarity
would not be helpful, as it could lead to selecting products
which are possibly covered by others. The centroid vectors
reduce this problem (they do not eliminate it) by choosing
sets that are selected by distant user preferences.

9. EXPERIMENTAL EVALUATION
In this section, we present the results of the experimen-

tal evaluation. All algorithms were implemented in Java
and the experiments run on 2x Intel Xeon X5650 Processors
(2.66GHz). The algorithms are disk-based and the index
structure used was an R-tree with a buffer size of 100 blocks
and the block size is 4KB. The main parameters and values
used through the experiments are presented in Table 4.
Data sets. For the data set S, we use both synthetic and

real data. We examine four different synthetic data distri-
butions, namely uniform (UN), correlated (CO), anticorre-
lated (AC) and clustered (CL). For the uniform data set, the
data object values for all m dimensions are generated inde-
pendently using a uniform distribution. The correlated and
anticorrelated data sets are generated as described in [3].
The clustered data set was created as follows: first 5 cluster
centroids were selected randomly. Then, each coordinate is
generated on the m-dimensional space by following a nor-
mal distribution on each axis with variance σ2

S = 0.345, and
a mean equal to the corresponding coordinate of the cen-
troid. In addition, we use a real data set. HOUSE (House-
hold) consists of 127930 6-dimensional tuples, representing

the percentage of an American family’s annual income spent
on 6 types of expenditure: gas, electricity, water, heating,
insurance, and property tax. For the data set W of the
weighting vectors, we used a uniform (UN) distribution.

Algorithms. We implemented the three algorithms for
centroid computation (Rtopk , Itopk , and Atopk) coupled
with the DPSA algorithm as described in Section 5, and
the selective top-k algorithm (Stopk) described in Section 6.
We also implemented an exact algorithm (denoted opt) that
finds the optimal solution, but obviously cannot scale well.
For reverse top-k processing, Rtopk uses the state-of-the-art
BBR* algorithm [23], while Itopk uses the BB algorithm [22].
In all algorithms the data set is indexed by an R-tree and
for the top-k query processing we employ a state-of-the-art
branch-and-bound algorithm [17].

Metrics. The metrics under which we evaluated the
implemented algorithms were: (a) execution time required
by each algorithm, (b) I/O accesses, (c) achieved diversity
values. We also measured the number of processed top-k
queries, but in the interest of space we do not report them
since they follow exactly the I/O metric. We measure only
the I/O induced on the data set S, since the I/O on W are
caused by sequential access and accessing data sequentially
is much faster than the random accesses of S.

We conduct an experimental study varying the parameters
of dimensionality (3-6), cardinality (1K-500K) of S, cardi-
nality (1K-500K) of W , value of k (5-50), value of r (3-30),
sample size |W ′| (0.001|W |-0.1|W |), and number of steps

(100-1000). Each experiment was repeated 10 times over
different instances of the data sets with the same parame-
ters and different seed to the random generator, in order to
factor out the effect of randomization. Average values are
reported in all cases.

Evaluation methodology. Our evaluation was divided
in three parts. In the first part (9.1), we compare the algo-
rithms Atopk and Stopk against the exact algorithm (opt)
in order to evaluate the quality of approximation of diver-
sity. In the second part (9.2), we evaluate the performance
of Stopk against the algorithms that rely on centroid compu-
tation (Rtopk , Itopk , and Atopk). In the last part (9.3 and
9.4), we perform a thorough sensitivity analysis of Atopk
(which proved to perform best among the algorithms with
centroid computation) against Stopk . We should stress that
the diversity of the result set of Stopk is calculated using the
whole set of preferences W , and not only the vectors used
for the identification of the most diverse products.

9.1 Quality of Diversity
The purpose of this series of experiments is to study the

loss of diversity compared to optimal solution when using
our algorithms Atopk and Stopk . Thus, we compare to
the optimal diversity produced by an exact algorithm (opt),

which examines all possible
(
|S|
r

)
combinations of products

exhaustively to find the optimal solution. Recall that Rtopk
and Itopk produce exactly the same result set as Atopk and
therefore have also the same diversity. The default setup for
this series of experiments was: m=3, |S| = 5K, |W | = 5K,
k = 10, r = 5, s = 0.1 · |W |, steps = 100, S:UN, and W :UN.

Figure 2 depicts the diversity values for varying differ-
ent parameters, namely |S|, |W |, r and k. The diversity
achieved by the greedy algorithm (Atopk) is in most cases
quite close to optimal, while Stopk results in similar diver-
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Figure 2: Comparison to optimal diversity value.
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Figure 3: Performance when varying |W |.

sity values. As we can observe, our approximate algorithms
perform very well in comparison with the exact algorithm.
In the worst case, when the size of the objects data set is only
|S|=1000 objects (Figure 2(a)), the maximum difference in
diversity is 19%. As the datasets grow in size, the diversity
of the result set of the approximate algorithms approaches
the optimal diversity. It is noteworthy that as the number
of returned objects (r) increases, the diversity value drops.
This behavior is expected as the more points we select the
smaller their average distance will become.
We omit the figures comparing the performance of our

algorithms to opt , since, as expected, our algorithms out-
performed the exact approach by 1-4 orders of magnitude in
terms of execution time.

9.2 Scalability Analysis
In this series of experiments we compare the performance

of the algorithms with centroid computation (described in
Section 5) in terms of execution time and I/O. We also in-
clude the Stopk algorithm in the charts for completeness.
The default setup for this series of experiments is m=3,
|S| = 10K, |W | = 10K, k = 10, r = 10, S:UN, W :UN,
steps = 100, s = 0.01 · |W |.
Varying weight cardinality |W |. As Figure 3 illus-

trates, Atopk and Stopk outperform by orders of magnitude
the Rtopk and Itopk algorithms in terms of execution time.
This difference is not reflected in the measured I/O, because
of the use of the buffer of the R-tree. When the number of
issued top-k queries is considered, both Rtopk and Itopk
process at least one order of magnitude more top-k queries
than Atopk and Stopk . This processing cost is responsi-
ble for their slow runtime. We note that even though both
Rtopk and Itopk are more efficient than Atopk when a single
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Figure 4: Performance when varying k.

reverse top-k query or a small number of influential points
is needed, they are less efficient when they are run repeat-
edly multiple times. In this case, Atopk has a benefit and
performs better. In particular, Rtopk has no memory of the
completed executions for different queries, and therefore it
computes repeatedly the top-k results of many preference
vectors. On the other hand, Itopk performs fewer reverse
top-k queries than Rtopk , but shares the same shortcoming
for those reverse top-k queries that it processes. Therefore,
it faces the same problem as the Rtopk , however in not such
great extent. Similar conclusions are drawn when varying
the data cardinality |S|. The performance of the algorithms
is much less affected by the increase of data cardinality, as
during the execution of the top-k queries very few data ob-
jects are accessed.

Varying k. Figure 4 illustrates the effect of varying pa-
rameter k. Atopk consistently outperforms Rtopk and Itopk
in terms of time, while Stopk improves further the perfor-
mance in terms of both time and I/O. Atopk , Rtopk and
Itopk have the same performance in terms of I/O due to
the R-tree buffer employed during query processing. Fur-
thermore, for all algorithms, both time and I/O increase for
increasing values of k.

Since Atopk consistently outperforms the two other algo-
rithms (Rtopk and Itopk) that rely on centroid computation,
we use only Atopk in the remaining experiments as repre-
sentative of this family of algorithms.

9.3 Sensitivity Analysis
In this section, we provide a detailed sensitivity analy-

sis by varying different parameters that influence the per-
formance of our proposed algorithms. Due to space limi-
tations, for some setups we omit the figures depicting the
I/O since the time indicates the efficiency of the algorithms.
The default setup for this series of experiments is m=3,
|S| = 100K, |W | = 100K, k = 30, r = 10, S:UN, W :UN,
steps = 500, s = 0.01 · |W |.

Sensitivity analysis for varying |S|, |W |, Data Dis-
tribution and m. In Figure 5, we study the behavior
of Atopk and Stopk for increasing cardinality of the data
set S and the weighting vectors W , as well as for various
data distributions (UN,CL,CO,AC) and dimensionality val-
ues m. First, we examine how the diversity values of Atopk
and Stopk for the different parameters are influenced (Fig-
ures 5(a)–5(d)). We observe that Stopk benefits from the
increased size of the data set and the preferences set. Stopk
retrieves a set of r objects that have similar diversity com-
pared to Atopk . In most cases the diversity achieved by
Stopk is almost equal to the one achieved by Atopk and
in some cases it is even slightly higher. This happens be-
cause Stopk locates the most diverse preferences and based
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Figure 5: Sensitivity analysis for varying |S|, |W |, data distribution and m.

on them it identifies the most diverse products. Atopk on
the other hand, bases the search for most diverse objects
on the centroids of the RTOPk sets of the products. For
increased dimensionality, as depicted in Figure 5(d), the di-
versity value of Stopk compared to Atopk is influenced more
than for the other parameters. Recall that the diversity be-
tween the products was calculated for Stopk using all vectors
in W and not only the ones used for the identification of the
products.
Figures 5(e)–5(h) show the execution time of the algo-

rithms with respect to various parameters. In Figure 5(e)
we notice that none of the algorithms is influenced signifi-
cantly by the data set cardinality, because top-k queries re-
quire retrieving only few data objects that are highly ranked
independently of the data set cardinality. Figure 5(f) (which
uses log-scale) shows that both algorithms are influenced in
a similar way while varying the number of weighting vec-
tors |W |, but Stopk is always more efficient than Atopk .
In particular, the time increases with increasing number of
weighting vectors |W |. In Figure 5(g), we depict the per-
formance of both algorithms for different data distributions.
In the case of anticorrelated data the execution time for
Atopk is 4 times larger that in the case of a uniform distri-
bution. On the other hand, the performance of Stopk is not
affected by anticorrelated values significantly. Figure 5(h)
shows that Stopk scales nicely for increased dimensionality,
in contrast to Atopk whose cost increases by one order of
magnitude when we go from 3 to 6 dimensions. This exper-
iment provides strong evidence for the scalability of Stopk
with increased number of dimensions.
Figures 5(i)–5(l) evaluate the performance of our algo-

rithms in terms of I/O accesses. The conclusions for the
I/O accesses are similar to those for the time, except for the

case of increasing the data set cardinality |S|. In Figure 5(i),
we notice that even though the time is not increased by vary-
ing |S|, the I/O accesses increase. Naturally, more I/O are
needed for processing a top-k query of a larger data set, but
this is not reflected on the time. Due to the buffering, the
computational cost of processing multiple top-k queries is
more significant than the time needed to retrieve the rele-
vant index nodes. Nevertheless, in all cases Stopk outper-
forms Atopk in terms of I/O. For example Figure 5(l) shows
that Stopk is two orders of magnitude cheaper than Atopk
in I/O accesses as we increase the dimensions.
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Figure 6: Varying r.

Varying r. Figure 6 examines the effect of varying the
number r of retrieved products on our algorithms. First, we
observe in Figure 6(a) a decreasing tendency of the diversity
value as r increases for both algorithms, which is expected as
also the diversity value of the optimal solution will decrease
as the most diverse products are selected first. As far as
the performance is considered, in Figure 6(b), the time of
Atopk is not influenced by the increase of r, because Atopk
computes all top-k queries independently of the size of the
result set r and the computational cost of DPSA algorithm
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Figure 7: Varying k.

0 

0.2 

0.4 

0.6 

0.8 

1 

100 200 500 1K

d
iv

e
rs

it
y

steps

Stopk Atopk

(a) Diversity

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 

100 200 500 1K

to
ta

l 
ti
m

e
 (

s
e

c
)

steps

Stopk Atopk

(b) Time

Figure 8: Varying steps.

is not significant compared to the cost of the top-k queries.
Stopk is also not significantly affected, since the values of
r are relatively small, and the algorithm is executed steps

times in any case. Still, Stopk remains always much faster
than Atopk .
Varying k. In Figure 7, we gradually increase the pa-

rameter k of the reverse top-k queries from 5 to 50. In Fig-
ure 7(a), we notice that the diversity value is stable as k in-
creases, which seems counter-intuitive at first. By increasing
k the size of the reverse top-k set increases for some objects
and more objects have a non-empty reverse top-k set. How-
ever, this does not influence the diversity value significantly,
as the most diverse centroids may not change. Figure 7(b)
depicts the time obtained for different values of k. Although
we witness a small deterioration in the performance of both
algorithms, Stopk consistently outperforms Atopk . Process-
ing top-k queries is more time-consuming for higher values
of k and the DPSA algorithm gets slower with increasing
k because the number of candidates for finding the diverse
objects increases. We should add however, that the effect of
parameter k has much smaller impact on the performance
of Stopk because Stopk performs a small number of top-k
queries.
Varying steps. The steps parameter is an essential pa-

rameter for the Stopk algorithm as it balances the efficiency
of the algorithm and the diversity the algorithm achieves.
Recall that Stopk performs only steps top-k queries, which
is only a small fraction of the |W | top-k queries that Atopk
performs. On the other hand, Stopk executes also steps

times DPSA algorithm algorithm on a small set of approxi-
mate centroids, which is not necessary for Atopk . In Figure
8, we observe that the diversity achieved using very few vec-
tors is quite close to the diversity achieved by Atopk . As we
increase the steps parameter the achieved diversity increases
marginally. However the execution time increases propor-
tionally with the increase of the steps parameter. This ex-
periment verifies that a small value of steps is sufficient to
produce results of high diversity in a very efficient way.
Varying sample size |W ′|. The size of sample of pref-

erences from which we select the two initial centroids plays
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Figure 10: House Dataset: varying |W|

an important role in the performance of the Stopk algo-
rithm. The complexity of the selection process is O(|W ′|2)
and therefore a large sample can have significant impact on
the performance of the algorithm. However, as shown in Fig-
ure 9, the increased cost in performance is not accompanied
by an increased gain in diversity. The reason behind this
fact is that once the sample is large enough to offer a good
representation of the whole set of preferences, further en-
largement will not help significantly in finding better initial
centroids.

9.4 Results on Real Data
We have also performed an evaluation of our algorithm

using a real data set. The conclusions drawn are overall
in accordance with the conclusions made by the evaluation
with synthetic data, thus verifying our findings. The default
setup for this series of experiments is |S| = 127930, |W | =
100K, k = 30, r = 10, W :UN, steps = 500, s = 0.01 · |W |.
The size of the data set used and the high complexity of the
exact algorithm (opt) did not allow the exact algorithm to
terminate and therefore we did not include its performance
results in this series of experiments.

Analysis for varying |W |, k, and r. Figures 10-12 de-
pict performance of the two algorithms. For all values of the
varying parameters Stopk achieves diversity values close to
the ones of Atopk . For both algorithms we notice a drop in
the diversity values when r is increases which is expected as
analyzed in 9.1. With respect to processing time it is evident
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that both parameters |W | and k play a significant role in the
performance of Atopk . This does not come as a surprise as
the processing cost of Atopk is dominated by the process-
ing cost of the top-k queries needed for the computation of
the centroids of the RTOPk sets for each product. On the
contrary Stopk is much less affected by those parameters as
it performs a limited number of top-k queries. The increase
of parameter r has little effect in both algorithms. The per-
formance difference with respect to I/O is in all cases larger
than two orders of magnitude. Only exception is for k < 10
where Stopk is one order of magnitude more efficient.

10. CONCLUSIONS
In this paper, we address the important problem of select-

ing the r most diverse products based on customers’ prefer-
ences. The reverse top-k set of each product is represented
by its centroid and the distance between centroids is then
expressed using cosine distance. In order to find products
that are attractive to customers with dissimilar preferences,
we define the r-Diversity problem as a dispersion problem
applied on the products’ reverse top-k sets. As dispersion
problems are known to be NP-hard, we propose two ap-
proximate algorithms that solve the problem. The first al-
gorithm computes the reverse top-k sets and then applies
a greedy algorithm that retrieves a set of products of high
diversity. The second applies the greedy algorithm on an
approximation of the reverse top-k sets by evaluating only
some carefully selected top-k queries. In our experimental
evaluation, we study the performance of the proposed algo-
rithms and the diversity of the retrieved products in various
experimental setups. In particular, we demonstrate that our
algorithms both achieve diversity values close to optimal and
are very efficient in practice.
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