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Abstract In this paper, we address the problem of processing reverse top-k
queries in a parallel setting. Given a database of objects, a set of user pref-
erences, and a query object q, the reverse top-k query returns the subset of
user preferences for which the query object belongs to the top-k results. Al-
though recently the reverse top-k query operator has been studied extensively,
its CPU-intensive nature results in prohibitively expensive processing cost,
when applied on vast-sized data sets. This limitation motivates us to explore
a scalable parallel processing solution, in order to enable reverse top-k pro-
cessing over distributed large sets of input data in reasonable execution time.
We present an algorithmic framework for the problem, in which different al-
gorithms can be instantiated, targeting a generic parallel setting. We describe
a parallel algorithm (DiPaRT) that exploits basic pruning properties and is
provably correct, as an instantiation of the framework. Furthermore, we in-
troduce novel pruning properties for the problem, and propose DiPaRT+ as
another instance of the algorithmic framework, which offers improved efficiency
and scales gracefully. All algorithms are implemented in MapReduce, and we
provide a wide set of experiments that demonstrate the improved efficiency of
DiPaRT+ using data sets that are four orders of magnitude larger than those
handled by centralized approaches.

1 Introduction

Preference-aware databases [16,5,13] have attracted wide attention recently,
due to the increased significance of personalization and ranking for real-life
applications. The most well-known operator is the top-k query, whose use is
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Fig. 1 Example of reverse top-k queries.

ubiquitous in modern systems. Given a database of objects described by a set
of numerical scoring attributes and a user with a preference (scoring) function
defined over these attributes, a top-k query retrieves the k objects with the
best scores for the particular preference function. In the model that is widely
used in related work [5,13,11,14,26,27,29] and in practice, the users express
their preferences through linear top-k queries, which are defined by assigning
a weight to each of the scoring attributes, indicating the importance of each
attribute to the user. Assuming a stored set of user preferences, and a query
q, the reverse top-k query [26] returns the subset of users for which q belongs
to their top-k results.

Consider for example, a database containing information about different
hotels as well as user preferences, as depicted in Figure 1. For each of the six
hotels, the rating and the number of stars are recorded, and maximum values
on each attribute are preferable (in the rest of this paper, minimum values
will be preferable, without loss of generality). The database also stores the
preferences of three users (u1, u2, and u3) in terms of weights on each attribute.
User u1 prefers hotels with high rating values, whereas u2 is interested in hotels
with many stars. User u3 is indifferent or values equally rating and stars. Also,
the reverse top-2 result of hotel p3 is depicted, which consists of users u2 and
u3. The reason is that p3 appears in the top-2 results of both these users.

Even though several centralized algorithms [11,24,26–29] for reverse top-
k query processing have been proposed, they typically entail prohibitively
expensive processing cost, when confronted with very large data sets, also
demonstrated by empirical results in Section 7.1. This is due to the CPU-
intensive nature of reverse top-k processing. Furthermore, these studies do
not deal with challenges posed by using distributed input sets of data, such
as reducing the communication overhead. These shortcomings motivate us
to explore parallel processing solutions that scale gracefully with the size of
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underlying data and can be used in practice when using the reverse top-k
query as a data analysis tool for distributed large data sets.

In previous work [18], we introduced the problem of scalable reverse top-k
processing and presented a first solution. In this paper, we present an algo-
rithmic framework for solving the problem, and provide new insights in terms
of pruning properties, leading to more efficient solutions. We assume a generic
parallel setting, where data is stored horizontally partitioned to nodes. Hence,
each participating node has access to a disjoint subset of data objects and user
preferences. Based on this setup, we present theoretical properties that allow
effective pruning of input data in a parallel way, while also guaranteeing the
correctness of the result. Capitalizing on these properties, we design a generic
algorithmic framework that consists of three phases: in the first phase, nodes
perform local processing on subsets of data objects and user preferences and
produce local results; in the second phase, the local results are repartitioned
and distributed to nodes in order to perform the computation in a completely
parallel way; while, in the third phase, result merging takes place in order
to deliver the final result. Our algorithms can be seen as instances of this
framework.

As an application scenario, consider any popular online shop (e.g., Amazon,
eBay, etc.) that has registered the profiles of millions of individual users, who
search for a specific item to buy among millions of products (e.g. books). User
preferences may be retrieved by tracking user activity on the online shop, such
as search criteria. Multiple preference vectors might correspond to a single user
profile, based on her preferences on a specific time, thus leading to increased
amount of data. Preference vectors, as well as data items (product data),
are stored distributed in several available servers, in an arbitrary way. The
online shop would be interested in designing a focused, personalized marketing
strategy in order to discover the subset of its customers (the reverse top-k
result) which would consider buying a product of interest (the query object).
The goal of such data analysis process would be to (a) analyze the result in a
parallel way, to reduce the processing time required by centralized reverse top-
k algorithms, and (b) reduce the communication cost entailed by transferring
large sets of data over the network. This process is a batch processing task
that is performed after having collected the historical data of user preferences
and product descriptions1.

This paper is an extended version of [18]. The new contributions of this
paper are summarized as follows:

– We propose an algorithmic framework for solving the problem of parallel
reverse top-k query processing (Section 2.3).

– We present DiPaRT algorithm [18] as an instantiation of our framework,
prove its correctness (Section 6.1), and provide its complexity analysis (Sec-
tion 6.2).

1 We explicitly state that our work targets offline processing of reverse top-k queries based
on all available data objects and user preferences at a given time point.
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– We extend a pruning technique (denoted as BB) for reverse top-k query
processing to be applicable in the parallel version of the problem (Sec-
tion 4.1), and present a novel pruning technique (denoted as WV) that
leads to improved effectiveness and performance (Section 4.2).

– We introduce and analyze DiPaRT+, an efficient and scalable parallel al-
gorithm, as a second instantiation of our framework, which can be pa-
rameterized with a pruning technique to achieve efficiency and scalability
(Section 5). We also provide the complexity analysis of DiPaRT+ (Sec-
tion 6.3).

– We implement our algorithms in MapReduce [7], and demonstrate their
merits in terms of efficiency and scalability by means of large-scale exper-
iments under a wide variety of settings (Section 7).

The rest of this paper, is organized as follows: Section 2 describes prelimi-
nary concepts along with the problem statement and our generic algorithmic
framework for solving the problem. Section 3 presents DiPaRT [18] as instan-
tiation of our framework. Section 4 introduces a set of advanced techniques
(BB and WV) for efficiently pruning both data objects and weighting vectors.
Section 5 presents DiPaRT+ algorithm as a second instantiation of our frame-
work. Section 6 provides the theoretical analysis of our algorithms. Section 7
demonstrates our experimental evaluation. Section 8 reviews related work and
finally, Section 9 concludes our study.

2 Preliminaries & Problem Statement

In this section, we present the preliminary concepts and formally state the
problem of parallel reverse top-k processing

2.1 Notation and Definitions

Let D be an n-dimensional data space, where each dimension i = 1, . . . , n
corresponds to a numerical non-negative scoring attribute. Denote by S ⊆ D
a set of database objects. Each p ∈ S is a point p = {p[1], . . . , p[n]}, where p[i]
is a value on dimension i. Without loss of generality, we assume that smaller
score values are preferable. Table 1 summarizes our notation.

A top-k query is defined with reference to a positive integer k and a scor-
ing function f , that aggregates an object’s individual scores into an overall
score. We consider the most commonly used weighted sum scoring function
fw(p) =

∑
i w[i]p[i], which associates a query-independent non-negative weight

w[i] ≥ 0, with each dimension i. We assume
∑

i w[i] = 1, as weights can be
normalized, without consequence to the top-k query result set. The result set
of a top-k query is a subset T (w, k) ⊆ S, satisfying |T (w, k)| = k and ∀pi, pj
such that pi ∈ T (w, k), pj ∈ S − T (w, k): fw(pi) ≤ fw(pj). Tie-breaking
may be needed for T (w, k) to be defined precisely, but we do not make any
particular assumption with respect to it.
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Table 1 Overview of symbols.

Symbols Description

D Data space
n Data dimensionality

S =
⋃

Si Data set of objects

W =
⋃

Wi Data set of weighting vectors

p[i] Value of point p on dimension i
q n-dimensional query point
w Weighting vector
T (w, k) Result of top-k query defined by vector w
R(S,W, k, q) Reverse top-k result set
S′i Non-dominated objects by q in data fragment Si

W ′i Reverse top-k result on S′i and Wi

(R(S′i,Wi, k, q))

S′′i Subset of data objects Si ⊆
⋃

S′j
W ′′i Partition of the set of vectors

⋃
W ′j

[l, u] A bounding box with lower corner l and upper
corner u (BB pruning)

bj Vertex j of the bounding polytope b (WV prun-
ing)

A reverse top-k query [26] identifies all weighting vectors for which a query
object q belongs to the top-k result set. Formally, given a point q, a positive
integer k and two data sets, S and W , of data points and weighting vectors re-
spectively, a vector wi ∈W belongs to the reverse top-k result setR(S,W, k, q)
of q, if and only if ∃p ∈ T (wi, q) such that fwi

(q) ≤ fwi
(p). This definition

corresponds to the bichromatic version of the reverse top-k query (cf. [26]),
which assumes that a set of user preferences W is provided.

A commonly used concept in several preference-aware queries is the dom-
inance property. A point p ∈ S dominates another point p′ ∈ S, denoted as
p ≺ p′, if (1) p[i] ≤ p′[i] on every dimension i; (2) p[j] < p′[j] on at least one
dimension j. Corollary 1 has been identified in previous work (among others,
in [26]) and is derived from the dominance property.

Corollary 1 Given any two points p, p′ ∈ S, if p ≺ p′:
- fw(p) ≤ fw(p′) for any weighting vector w,
- R(S,W, k, p′) ⊆ R(S,W, k, p) for any set W of weighting vectors.

2.2 Problem Statement

In our setting, we consider two data sets S and W arbitrarily partitioned and
distributed over different nodes (servers). Each server, in principle, takes as
input subsets Si ⊆ S (Si ∩ Sj = ∅, S =

⋃
Si) and Wi ⊆ W (Wi ∩Wj = ∅,

W =
⋃
Wi), and the goal is to compute the reverse top-k result R(S,W, k, q),

while reducing the execution time through parallel processing.
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Fig. 2 Parallel reverse top-k query processing.

Problem 1 (Parallel Distributed Reverse Top-k Problem) Given two data
sets S and W which are horizontally partitioned in an arbitrary way and dis-
tributed over different servers, compute the reverse top-k result: R(S,W, k, q).

The naive approach of collecting all data at a central location and per-
forming the reverse top-k query processing using a state-of-the-art centralized
algorithm [28] is prohibitively expensive. Thus, we turn our attention to paral-
lel processing solutions. Let us consider a plain approach that computes local
reverse top-k results over subsets Si and Wi, and reports the union of the
local results as the final result. As already discussed in [18], this approach fails
to compute the correct reverse top-k result, since the result set may include
weighting vectors that do not belong to the R(S,W, k, q) (false positives).

2.3 Algorithmic Framework and Research Challenges

Figure 2 provides an overview of the proposed algorithmic framework. In
the first phase (local processing), each server takes as input arbitrary sub-
sets Si ⊆ S and Wi ⊆ W , and computes output sets S′i ⊆ Si and W ′i ⊆ Wi,
by pruning unnecessary objects. In the second phase (repartitioning), the sets⋃
S′i and

⋃
W ′i are redistributed to the servers, using intentional assignment

or replication, in order to ensure correctness during parallel processing. In the
third phase (result merging), each server takes as input sets S′′i and W ′′i (prac-
tically repartitions of sets

⋃
S′i and

⋃
W ′i ) and computes part of the reverse

top-k result independently, so that a plain union of individual result sets yields
the final result.

Consequently, the parallel reverse top-k problem entails two grand chal-
lenges. The first challenge is to determine the output sets S′i ⊆ Si and W ′i ⊆
Wi such that they are sufficient to compute the correct result set. In other
words, S′i and W ′i need to satisfy the following property: R(

⋃
S′i,

⋃
W ′i , k, q) =

R(S,W, k, q). The second challenge is to determine the input sets S′′i and W ′′i
for each server, in such a way that (a)

⋃
R(S′′i ,W

′′
i , k, q) = R(S,W, k, q), and
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(b) the amount of data exchanged over the network is minimized. Note that
the crucial difference of Si and Wi compared to S′′i and W ′′i is that the former
sets are arbitrary partitions of S and W , whereas S′′i and W ′′i are partitioned
deliberately and computed in parallel on the second phase, in order to ensure
the correctness of the final result.

3 The DiPaRT Algorithm

In this section, we present the DiPaRT algorithm [18], as an instantiation of
our framework, which exploits the pruning properties outlined next.

3.1 Simple Pruning

The following properties determine subsets of S and W that are sufficient
for computing R(S,W, k, q). The basic idea of DiPaRT is to replicate S′i =
{p|p ∈ Si and q 6≺ p} to all Reduce tasks. Then, an arbitrary distribution of
local results W ′i = R(S′i,Wi, k, q) to Reduce tasks is sufficient to provide the
correct result.

Dominance-based pruning. According to Corollary 1, in any local data
partition Si, data points p ∈ Si that are dominated by q, do not affect the
reverse top-k result and can be safely pruned. Thus, a simple way to define S′i
is to remove from Si those data objects dominated by q.

Vector pruning. A simple way to determine W ′i from Wi is to remove all
weighting vectors w ∈Wi that do not belong to the local reverse top-k result
R(Si,Wi, k, q) based on local data sets Si and Wi. It is trivial to show that
these vectors are guaranteed not to appear in the final reverse top-k result.

3.2 Local Processing and Pruning

Algorithm 1 presents the Map function of DiPaRT. It takes as input subsets
Wi ⊂W and Si ⊂ S, the query point q, the number k and a number r indicat-
ing the number of Reduce tasks. DiPaRT applies dominance-based pruning for
data objects (Section 3.1) by comparing them to the query object q (line 5).
The surviving data objects S′i are maintained in Map task’s main memory
(line 6), along with the weighting vectors w ∈ Wi (lines 11– 13). As soon as
the InputSplit is exhausted, DiPaRT performs vector pruning (Section 3.1) by
using the RTA algorithm [26].

In technical terms, DiPaRT implements a customized InputFormat that
creates InputSplits (a logical representation of a unit of input work) containing
records from both data sets. This customized InputFormat provides input data
to the Map function, and is configured to first provide objects p ∈ Si and then,
vectors w ∈ Wi. Also, the size of the input data sets |Wi| + |Si| is limited to
be at most 128 MBs, to enable temporary storage of both sets in the main
memory of a Map task.
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Algorithm 1: DiPaRT: Map phase
1: Input: Si, Wi, q, k, r: number of Reduce tasks
2: Output: S′i, W

′
i

3: function MAP (x: input tuple)
4: if x is a data object p then
5: if p is not dominated by q then
6: add p to memory S′i
7: for j in [1, . . . , r] do
8: output 〈j, p〉
9: end for

10: end if
11: else {x is a weighting vector w}
12: add w to memory Wi

13: end if
14: if no more input tuples then
15: W ′i ← RTA(S′i,Wi, q, k)
16: for w ∈W ′i do
17: j ← j + 1
18: output 〈j%r, w〉
19: end for
20: end if
21: end function

3.3 Result Merging

In the Result Merging phase, one solution would be to have a single node that
computes the final result R(

⋃
S′i,

⋃
W ′i , k, q) = R(S,W, k, q) in a centralized

fashion, which is straightforwardly correct. However, our goal is to avoid having
a central point of merging intermediate result sets. The Reduce function of
DiPaRT (Algorithm 2) takes as input a partition of

⋃
W ′i and the entire

⋃
S′i,

along with the value k and the query point q, and produces the local reverse
top-k result. The final result is the union of these local results.

DiPaRT, however, also comes with a shortcoming: it needs to transfer
(shuffle) the set

⋃
S′i multiple times over the network, which incurs high com-

munication cost and also increases the time spent for shuffling. To overcome
this limitation, in Section 4 we introduce a set of more sophisticated pruning
techniques which efficiently eliminate both data objects and weighting vectors.

4 Advanced Pruning Techniques

In this section, we present our advanced pruning techniques that avoid the
replication of

⋃
S′i and reduce the size of W ′′i . Interestingly, these techniques

enable parallel merging, i.e., each group of vectors can be processed in parallel,
and a plain union of the results, outputs the correct final result.
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Algorithm 2: DiPaRT: Reduce phase

1: Input: S′′i =
⋃

S′j , W ′′i ⊆
⋃

W ′j , k, q

2: Output: R(S′′,W ′′, k, q)
3: function REDUCE(key, V : Set of values)
4: for x ∈ V do
5: if x is a data object p then
6: add p to memory S′′i
7: else {x is a weighting vector w}
8: add w to memory W ′′i
9: end if

10: end for
11: R(S′′,W ′′, k, q)← RTA(S′′i ,W

′′
i , q, k)

12: output R(S′′,W ′′, k, q)
13: end function

4.1 Pruning Data Objects based on Bounding Boxes

Consider a grouping of weighting vectors that (a) creates r groups P =
{W ′′1 , . . . ,W ′′r } that form non-overlapping partitions (i.e., the groups W ′′i are
disjoint), and (b) the partitions cover the entire weighting vectors space. Given
a specific partition W ′′i , we can represent it using a box with lower-left corner
l and upper-right corner u. The l and u corners are considered as pseudo-
vectors, since

∑
i l[i] < 1 and

∑
i u[i] > 1. The l and u pseudo-vectors of

partition W ′′i correspond to the enclosing minimum and maximum coordinate
values, respectively. Formally, given a partition W ′′i , its pseudo-vectors l and u
can be calculated as follows: l = {min(W ′′i [1]),min(W ′′i [2]), ...,min(W ′′i [n])}
and u = {max(W ′′i [1]),max(W ′′i [2]), ...,max(W ′′i [n])}. The score of any data
object p ∈ S and for any vector w ∈ W ′′i is bound by the values: fl(p) ≤
fw(p) ≤ fu(p) [28].

The bounds are used to identify groups of vectors W ′′i for which q is always
ranked higher than p, thus avoiding replication for a particular group W ′′i .
Even though any random grouping of the weighting vectors is sufficient for
applying BB pruning (i.e., does not affect the correctness), the efficiency may
vary based on the size of the selected box.

In practice, this grouping can be achieved by partitioning the weight vec-
tor space using a grid-based partitioning scheme. An example of grid-based
partitioning is depicted in Figure 3a for the 2D vector space, where the weight
vectors are located on the line w[1] + w[2] = 1. For every partition, we can
derive a 2D box by calculating the pseudo-vectors l, u. In Figure 3a the grayed
box contains a single partition of the vector space, and points l, u correspond
to lower and upper corners of the grayed partition respectively.

By exploiting the aforementioned bounding values fl(p) ≤ fw(p) ≤ fu(p)
to the parallel version of the problem, we propose BB memory-less and BB
memory-based techniques for pruning data objects based on a partition W ′′i .

BB Memory-less pruning. The following lemma provides a condition
for pruning individual data objects for a group of vectors, independently of
previously examined data objects.
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Lemma 1 Given a reverse top-k query q, a data object p, and a group W ′′i ∈ P
of weighting vectors represented by a box [l, u], p does not affect the reverse
top-k result of q (or q precedes p) for any vector w ∈ W ′′i and can be safely
pruned, if: fl(p) ≥ fu(q).

Proof Let w denote any vector that belongs to W ′′i , thus it is enclosed in the
box [l, u] of W ′′i . It suffices to show that p has a worse score than q for any
such vector w, i.e., ∀w ∈ W ′′i : fw(p) ≥ fw(q). Since w in enclosed in [l, u],
it holds that fw(p) ≥ fl(p). It is given that fl(p) ≥ fu(q), thus we derive
that fw(p) ≥ fu(q). Again, due to w being enclosed in [l, u], it holds that
fu(q) ≥ fw(q). Consequently, it also holds that fw(p) ≥ fw(q).

Intuitively, this bounding inequality is illustrated in Figure 3b as the dashed
line fl(p) = fu(q). This line splits the object data space in two parts; the
objects that fall in the white part of the space (e.g. p2) do not affect the
ranking of q for all w ∈W ′′i , thus can be safely pruned for W ′′i .

BB Memory-based pruning. For each partition W ′′i , we maintain a
buffer of data objects of length k. Each time a data object p is processed, we
check the contents of the buffer and if it contains k data objects {p1, . . . , pk}
such that the k-th higher value fu(pk) is better than the best possible value
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Fig. 4 Angle-based partitioning of space in 3D.

fl(p) of p, then p can be pruned, as it does not affect the rank of q for W ′′i . The
buffer is sorted based on increasing fu(pi) values, thus the highest value fu(pk)
corresponds to the k-th object in the order. Also, the buffer is updated if an
incoming data object p has a better value fu(p) than the k-th value fu(pk)
of the buffer. In this case, pk is evicted from the buffer, and p is inserted in
the buffer. The following lemma establishes the correctness of memory-based
pruning.

Lemma 2 Given a reverse top-k query q, a data object p and a group W ′′i ∈ P
of weighting vectors represented by a box [l, u], p does not affect the reverse
top-k result of q for any vector w ∈ W ′′i , if: ∃{p1, . . . , pk} ∈ S, such that
∀i ∈ [1, k] : fu(pi) ≤ fl(p).

Proof Let w denote any vector that belongs to W ′′i , thus it is enclosed in the
box [l, u] of W ′′i . It suffices to show that there exist k other objects with better
score than p for any such vector w, i.e., ∃{p1, . . . , pk} ∈ S, such that ∀i ∈ [1, k] :
fw(pi) ≤ fw(p). Since w in enclosed in [l, u], it holds that fw(p) ≥ fl(p). It is
given that k objects {p1, . . . , pk} do exist such that fw(p) ≥ fl(p) ≥ fu(pi).
For any such point pi, it also holds that fu(pi) ≥ fw(pi), because w is enclosed
in [l, u]. Therefore, we derive that there exist k objects {p1, . . . , pk} such that
fw(p) ≥ fw(pi).

4.2 Pruning Data Objects based on Weighting Vectors

BB pruning relies on the use of pseudo-vectors l and u. A shortcoming is that
these pseudo-vectors are worst-case approximations of vectors in W ′′i , since
they are defined by the enclosing minimum and maximum coordinate values
respectively. As such, although using the bounding box [l, u] provides cheap
pruning, it does not provide the means for maximizing the bounding tightness.

Motivated by this shortcoming, we propose novel tighter bounds. Since
these bounds rely on actual bounding vectors, we first need to employ a dif-
ferent partitioning scheme of the weight vector space, namely angle-based par-
titioning. By using angular coordinates on the weight vector space, we can
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partition the hyperplane
∑n

i=1 w[i] = 1 in convex polytopes. A convex poly-
tope W ′′i is defined by vectors b1, b2, ..., b2n−1 , whose projections on the plane
of the weighting vectors are the vertices of the convex polygon.

An example of this partitioning scheme is illustrated in Figure 4 for the
case of a 3-dimensional weight vector space. Given that the weighting vectors
in this example are located on the plane w[1] + w[2] + w[3] = 1, each angle
partition is defined by four vectors bj , j = 1, 2, 3, 4, whose projections on the
plane of the weighting vectors are the vertices of a convex polygon, enclosing
a group W ′′i of weighting vectors. For the case of 2D weight vector space, an
example is also depicted in Figure 3c, where the vectors are located on the line
w[1] + w[2] = 1. The triangles define line segments that represent partitions
of the 2D vector space, while vectors b1, b2 are the vertices of the polytope
defining the grayed partition. This approach can be generalized and applied
in n > 3 dimensions too, at the expense of having 2n−1 vectors describing the
convex polytope.

The principle of WV pruning is portrayed by Lemma 3.

Lemma 3 Let P denote a convex polytope on the hyperplane
∑n

i=1 w[i] = 1,
defined by the preference vectors. For any two points p, q ∈ S, if fv(q) ≤ fv(p)
holds for every vertex v of the polytope P, then fw(q) ≤ fw(p) holds for every
point of P (q precedes p).

Proof 1 Let w ∈ P be any point of the polytope. By Carátheodory’s theorem
(see e.g., [22]), w can be written as the convex combination of at most n + 1
vertices of P: that is, there exists a subset V = {v1, v2, . . . , vd} of d ≤ n +

1 vertices of P, such that w =
∑d

j=1 λjvj, for λj,j = 1, . . . , d, satisfying∑d
j=1 λj = 1. Then, if vj · q ≤ vj · p for every vj ∈ V, we have λj(vj · q) ≤

λj(vj · p), thus, also, (λjvj) · q ≤ (λjvj) · p; summing these latter inequalities
over j = 1, . . . , d yields w · q ≤ w · p.

In order to apply Lemma 3, we can simply use the actual vectors bj obtained
by angle-based partitioning, since the projection of each bj on the plane of the
weighting vectors is just ρjbj , for some scalar ρj . Notice however, that Lemma 3
does not imply the use of a specific partitioning scheme. Hence, WV pruning
may exploit any provided non-overlapping angular based partitioning scheme.
For example, if the distribution of vectors was available, (e.g., by sampling),
the angles could be defined in a way that each partition has a similar number
of containing vectors.

Example 1 Intuitively, an example of Lemma 3 in 2D data object space is
depicted in Figure 3d, where the lines fb1(p) = fb1(q) and fb2(p) = fb2(q)
defined by partition W ′′i = [b1, b2] split the space to three parts; the objects
of the white part (e.g., p1, p2) can be safely pruned for W ′′i . Notice that in
comparison to the BB memory-less pruning example (Figure 3b), the volume of
the white space is significantly higher for the WV pruning example (Figure 3d),
although the partitions W ′′i = [l, u] and W ′′i = [b1, b2] are deliberately chosen
to be the same: b1 and b2 are actually the upper left and lower right corners
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of the bounding box [l, u] respectively. In this particular example, the point
p1 can be pruned only by using WV pruning on W ′′i , thus demonstrating the
effectiveness of this technique.

4.3 Early Termination

Given a partition of weighting vectors W ′′i , if there exist at least k data objects
p which are ranked higher than q for every w ∈ W ′′i (p precedes q), then
this partition has an empty result set. This useful property can be exploited
for terminating early the processing of a particular partition W ′′i , as long as
we have found at least k data objects preceding q. By terminating early the
processing of a particular partition, we are able to efficiently perform both
data object and weighting vector pruning seamlessly, at no processing cost.

Early termination can be easily achieved by extending either of the pre-
viously proposed pruning techniques: for BB pruning we need to count the
number of data objects which satisfy fu(p) < fl(q), while for WV pruning we
need to count the number of data objects which satisfy fbj (p) < fbj (q) for all
vertices bj of a convex polytope.

Intuitively, the above property is illustrated in Figures 3b and 3d as the
grayed area of the object data space. The data objects in this area (e.g., p3)
precede q and contribute to the counter associated with W ′′i partition. Notice
once more, that WV pruning results in a significantly larger grayed area. The
shaded area corresponds to points p whose rank with respect to q cannot
be determined. WV pruning reduces the space of undetermined ranking, and
increases the space corresponding to better (and worse) ranked points than q.
In turn, this increases the efficiency of our approach.

5 The DiPaRT+ Algorithm

In this section, we introduce the DiPaRT+ algorithm that capitalizes on the
advanced properties introduced in Section 4. In fact, DiPaRT+ is parameter-
ized by the pruning technique employed, hence it can operate using either of
the techniques described in Sections 4.1 or 4.2.

5.1 Local Processing and Pruning

The Map function of DiPaRT+ is depicted in Algorithm 3. It takes as input
subsets Si ⊂ S, Wi ⊂ W , the query point q, the number k and a partitioning
scheme P of the weighting vector space.

If the input tuple is a data object p (line 4), we check if p is dominated
by q, in order to quickly prune it (line 5). If this is unsuccessful, we examine
the partitions of P and try to avoid redistributing p to every partition, by
applying either BB or WV pruning.
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Algorithm 3: DiPaRT+: Map phase

1: Input: Si, Wi, q, k, P = {W ′′1 , . . . ,W ′′r }
2: Output: S′i, W

′
i

3: function MAP (x: input tuple)
4: if x is a data object p then
5: if p is not dominated by q then
6: for W ′′i ∈ P = {W ′′1 , . . . ,W ′′r } do
7: if earlyTerminationCounter[i] ≥ k then
8: continue {prune p}
9: else if q precedes p for W ′′i then

10: continue {prune p}
11: else if p precedes q for W ′′i then
12: earlyTerminationCounter[i]++
13: output 〈(i, 1), p〉
14: else
15: output 〈(i, 2), p〉
16: end if
17: end for
18: end if
19: else {x is a weighting vector w}
20: i← {i|w ∈W ′′i and P = {W ′′1 , . . . ,W ′′r }}
21: output 〈(i, 3), w〉
22: end if
23: end function

To this end, we first try to prune p using the Early Termination technique
of Section 4.3 (line 7): for the currently examined partition W ′′i , we check the
associated counter which keeps track of the number of objects preceding q and
if it is greater than or equal to k, then we prune p (line 8).

If the above was unsuccessful, we check if q precedes p for W ′′i (line 9).
For WV pruning, this can be achieved by checking if fbj (q) ≤ fbj (p) for all
vertices bj of polytope W ′′i , while for BB memory-less pruning this translates
to checking if fu(q) ≤ fl(p) for the partition W ′′i = [l, u]. When using the BB
pruning technique, we also apply BB memory-based pruning during this step,
by checking if the k-th object pk of the associated buffer is better than fl(p)
(i.e. fu(pk) ≤ fl(p)). In the case any of the above holds true, we are able to
prune p for W ′′i (line 10).

If we were not able to prune p, we check if p precedes q for partition W ′′i
(line 11). For WV pruning this can be examined by checking if fbj (p) < fbj (q)
for all vertices bj of polytope W ′′i , while for BB pruning we simply check if
fu(p) < fl(q). In case the check returns true, we increment the associated Early
Termination counter (line 12) and output the data object. We use a composite
output key consisting of the partition identifier i of W ′′i and the tuple identifier
1, which facilitates the early termination of Reduce task i (line 13). If none of
the above holds, we just redistribute data object p to Reduce task i using the
tuple identifier 2 (line 15).

In case the input tuple is a vector w (line 19), we determine the partition
identifier i of W ′′i ∈ P that encloses w (line 20). The output composite key
(line 21) consists of this partition identifier and the tuple identifier 3, which
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Algorithm 4: DiPaRT+: Reduce phase

1: Input: S′′i , W ′′i , q, k
2: Output: R(S,W, k, q)
3: function REDUCE(key, V : Set of values)
4: for x ∈ V do
5: if x.tupleIdentifier = 1 then {data object x precedes q}
6: k = k - 1
7: if k = 0 then {early termination}
8: exit
9: end if

10: else if x.tupleIdentifier = 2 then {x is a data object}
11: add x to memory S′′i
12: else if x.tupleIdentifier = 3 then {x is weighting vector}
13: if w ∈ Res|Res : RTA(S′′i , w, q, k) then
14: output 〈w〉
15: end if
16: end if
17: end for
18: end function

indicates the tuple as a weighting vector. Notice that, contrary to DiPaRT,
DiPaRT+ does not use reverse top-k query processing to prune vectors in
the Map phase. Instead, our premise is to benefit by the significantly higher
efficiency of the Early Termination technique described in Section 4.3, to prune
weighting vectors in the Reduce phase, effectively, without any processing cost.

The composite intermediate key consists of two parts: the partition iden-
tifier and the tuple identifier. Essentially, the partitioning of intermediate re-
sults, is achieved by implementing a customized Partitioner, which only takes
into account the partitioning identifier of the composite key. The tuple iden-
tifier is exploited by a customized Comparator to apply secondary sorting on
the intermediate tuples during the Shuffle phase. In the Reduce phase, the
goal is to have data objects that precede q (tagged with tuple identifier 1) ar-
rive prior to other data objects (tagged with tuple identifier 2), which in turn
should arrive prior to candidate weighting vectors (tagged with tuple identifier
3).

5.2 Result Merging

The Reduce function of DiPaRT+ is depicted in Algorithm 4 which performs
the result merging. The inputs for Reduce task i are the intermediate data
objects and weighting vectors which have a partition identifier value of i. Due
to the secondary sorting, the data objects that precede q are processed first. If
k such objects exist (line 7), we can safely deduce that the result of the current
partition (and Reduce task) is empty and terminate its processing immediately,
as discussed in Section 4.3. Notice that in such a case, the Reduce task will
terminate without performing any additional computation on the remaining
tuples. If the Reduce task does not terminate early, the remaining data objects
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p are accessed and maintained in memory. Then, the candidate weighting
vectors are accessed one by one to determine the result set R(S′′i ,W

′′
i , k, q)

using the RTA algorithm [26]. Also notice that the k value might be smaller
than its initial value, due to the decrement that might have occurred in line 6.

6 Correctness and Complexity Analysis

In this section, we initially prove the correctness of DiPaRT algorithm. Then,
we provide a complexity analysis for both DiPaRT and DiPaRT+, as an ana-
lytical comparison between the two approaches.

6.1 Correctness of DiPaRT

In the following, we prove that if every data object is replicated to all servers
S′′i =

⋃
S′i, and W ′′i ⊂

⋃
W ′i is an arbitrary disjoint subset of

⋃
W ′i , then the

correct result set can be produced. This is because the computation of each
w ∈W is independent of other w′ ∈W (w 6= w′), but still requires all relevant
data objects.

Lemma 4 The pruned sets
⋃
W ′i and

⋃
S′i determined at the Map phase of

DiPaRT are sufficient to produce the correct reverse top-k result set in the
Reduce phase, if (1) S′′i =

⋃
S′i and (2) W ′′i ⊂

⋃
W ′i and

⋃
W ′′i =

⋃
W ′i , i.e.:⋃

R(S′′i ,W
′′
i , k, q) = R(S,W, k, q).

Proof 2 (Sketch) Initially, let us assume that ∃w ∈ R(S,W, k, q) such that
w 6∈

⋃
R(S′′i ,W

′′
i , k, q). There are two cases: (a) if w ∈ W ′′i , then there exist

k objects in S′′i =
⋃
S′i that are ranked higher than q w.r.t. w. Since S′′i ⊆ S,

it holds that w 6∈ R(S,W, k, q), a contradiction. (b) if w 6∈ W ′′i , then w 6∈⋃
W ′i , which means that w has been eliminated due to vector pruning, thus

w 6∈ R(S,W, k, q), a contradiction.
Let us assume that ∃w ∈

⋃
R(S′′i ,W

′′
i , k, q) such that w 6∈ R(S,W, k, q).

This means that there exist k objects in S that are ranked higher than q w.r.t.
w, but there exist fewer than k objects in S′′i =

⋃
S′i that are ranked higher

than q. Thus, at least one point p that belongs to S−
⋃
S′i is ranked higher than

q. Then, based on the definition of S′i, q dominates p, which in turn means
that the score of p cannot exceed the score of q, a contradiction.

6.2 Complexity Analysis of DiPaRT

In terms of space complexity, each Map task of DiPaRT requires O(|Wi|)
memory consumption plus the space required for storing the R-Trees (required
by RTA) of individual S′i sets. Also, the amount of shuffled data is O(r·|

⋃
S′i|+

|
⋃
W ′i |), where r is the number of Reduce tasks. In the Reduce phase, the space

complexity is O(|RTree(
⋃
S′′i )| + |

⋃
W ′i |
r ). In summary, the main bottleneck
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is the size of
⋃
S′i, which should not exceed the available memory of a Reduce

task.
Regarding time complexity, each Map task needs to process in the worst

case |Wi| top-k queries, which corresponds to O(|Wi| · |Si|) complexity (this is
the worst-case scenario for any reverse top-k algorithm). In the Reduce phase,

the number of top-k queries that need to be processed is
|
⋃

W ′i |
r for r Reduce

tasks, which corresponds to O(
|
⋃

W ′i |·|
⋃

S′i|
r ) complexity.

A summary of the complexity analysis of DiPaRT algorithm is depicted in
Table 2.

Table 2 Complexity summary of DiPaRT.

Map task Reduce task Shuffle

Time O(|Wi| · |Si|) O(
|
⋃

W ′i |·|
⋃

S′i|
r

)

Space O(|Wi|+ |RTree(S′′i )|) O(|RTree(
⋃

S′i)|+
|
⋃

W ′i |
r

) O(r · |
⋃

S′i|+ |
⋃

W ′i |)

6.3 Complexity Analysis of DiPaRT+

Regarding main memory requirements, each Map task of DiPaRT+ consumes
O(k · r) memory, while each Reduce task requires O(|RTree(S′′i )|) memory.
The amount of intermediate results is O(|

⋃
W ′′i | + |

⋃
S′′i |). We need to em-

phasize that while it holds |S′′| = |
⋃
S′′i | = r · |

⋃
S′i| = r · |S′| for DiPaRT, the

same is not true for DiPaRT+, since the second algorithm utilizes advanced
techniques that are able to prune replicated data objects. For DiPaRT+ it
holds that |S′′| ≤ r · |S′|.

In terms of time complexity, a Map task might search O(r) partitions in
the worst-case to determine the partition of each weighting vector. For data
objects, a Map task with BB pruning performs O(r) comparisons for memory-
less pruning, plus O(k · r) comparisons for memory-based pruning. A Map
task with WV pruning performs r · O(2 · |Vi|) = r · O(2 · 2n−1) = O(r · 2n)
comparisons. Each Reduce task processes O(|W ′′i |) top-k queries, if it does not
terminate early.

A summary of the complexity analysis of DiPaRT+ algorithm is depicted
in Table 3.

Table 3 Complexity summary of DiPaRT+.

Map task Reduce task Shuffle

Time O(k · r) for BB or
O(r · 2n) for WV

O(|W ′′i | · |S
′′
i |)

Space O(k · r) O(|RTree(S′′i )|) O(|
⋃

W ′′i |+ |
⋃

S′′i |)
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6.4 Discussion

In terms of space complexity, DiPaRT+ is more efficient than DiPaRT, since
(a) in the Map Tasks, the former does not need to store the S′i in RTree
and (b) in the Reduce tasks, DiPaRT needs to additionally store the W ′′i
items. Regarding time complexity, DiPaRT+ is more efficient than DiPaRT
in its Map tasks, since it utilizes the advanced pruning techniques, to quickly
prune data items and weight vectors. The time complexity of DiPaRT’s Map
tasks is mostly affected by the expensive reverse top-k computation. In Reduce
tasks, the time complexity of DiPaRT+ is greatly dependent on the utilized
partitioning scheme, since the size |W ′′i | is defined by the selected partitioning
scheme. On the other hand, the time complexity of DiPaRT’s Reduce tasks is
only affected by the number of surviving weight vectors (W ′i ) and data objects
(S′i).

The complexity of our algorithms is determined by the sizes of
⋃
S′i,

⋃
S′′i ,⋃

W ′i and
⋃
W ′′i . Since there is no theoretical guarantee of these sizes, we rely

on practical heuristics to demonstrate the effectiveness of our proposed pruning
techniques. Hence, we provide an extensive experimental study in Section 7
which empirically demonstrates that DiPaRT+ outperforms DiPaRT and both
BB and WV pruning have a high pruning effectiveness.

7 Experimental Evaluation

7.1 Limitations of Centralized Algorithms

We demonstrate the limitations of centralized reverse top-k algorithms, RTA [27]
and branch-and-bound [28], when confronted with really big data sets. We im-
plemented both algorithms in Java 7, and deployed them on a machine with
a 4-core CPU running at 3.6GHz and 16GB of RAM. Both algorithms were
tested with input 4-dimensional data sets of 10GB (5GB S and 5GB W )
uniformly (UN) distributed, and using a reverse top-k query with k=20 that
returns 40% of W as result. The branch-and-bound algorithm required 4 hours
of pre-processing to build the R-Trees for both data sets S and W , plus 48
hours to report the final result set. RTA did not report the result set after
48 hours. Hence, it is clear that centralized processing is not a feasible so-
lution in the case of massive volumes of input data. Also, these experiments
demonstrate that the reverse top-k query is a costly query operator, and its
parallelization makes processing large-sized data sets more practicable.

7.2 Evaluation of Parallel Algorithms

In this section we evaluate the performance of our proposed parallel solutions.
Both DiPaRT and DiPaRT+ are implemented in Java2, using Apache Hadoop.

2 Source code available at: https://github.com/nikpanos/rtopk.distributed
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Fig. 5 Comparative performance of DiPaRT vs. DiPaRT+ for various sizes of data set W
using TPC-H.

7.2.1 Experimental Setup

Platform. All algorithms are deployed at an in-house CDH 5.12 cluster con-
sisting of 22 nodes with Hadoop 2.6 installed. Nodes 0-8 have 32GB of RAM,
5TB hard disk space and 2 CPUs, each featuring 4 cores running at 2.6 GHz.
Nodes 9-21 have 128GB of RAM, 8TB hard disk space and 2 CPUs, each hav-
ing 6 cores running at 2.6 GHz. On each node Java 8 is installed on Ubuntu 14,
and the JVM heap size is set to 2GB for Map tasks and 8GB for Reduce tasks.
We also configured HDFS with 128MB block size and a replication factor of
3.

Data sets. In order to use large-sized data sets for data objects S and user
preferences W , we use synthetic data generators. For data objects S we use
(a) a customized generator that produces uniform (UN), correlated (CO) or
anti-correlated (AC) data distributions (as in [2,24,26]), and (b) the TPC-H
generator, generating data for the “Part” and “PartSupp” tables with scale
factor of 1000. In the case of TPC-H, the data set S of products is generated
by joining the aforementioned tables. We pick only numerical attributes by the
joined result set, namely “size”, “retailprice”, “qty” and “scost”. As a result,
a 5GB TPC data set is produced by selecting the top 125 million tuples.
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Fig. 6 Performance of advanced pruning techniques for various query points q.

Weight vectors w that correspond to user preferences are generated fol-
lowing clustered (CL) or uniform (UN) distributions; the produced values are
normalized so that

∑n
i=1 w[i] = 1. For the clustered data set, 100 cluster cen-

troids are picked randomly and the coordinates of generated points follow a
Gaussian distribution on each dimension with variance 0.5, and a mean equal
to the corresponding coordinate of the centroid.

The sizes of our synthetic non-TPC data sets S and W vary from 5GB to
1000GB for 2 to 6 dimensions. Notice that our default 4-dimensional exper-
imental setup has a combined input size of 1TB (500GB S plus 500GB W ).
Our largest data set S consists of more than 36 billion data objects, while the
largest W data set contains more than 45 billion weighting vectors. These are
four orders of magnitude larger than the ones used in the centralized reverse
top-k approaches so far (e.g., [24,28,29]). Moreover, we need to emphasize
that a baseline solution for processing a reverse top-k query, requires process-
ing a top-k query for each weighting vector in W . Thus, for our largest data
set W , more than 45 billion top-k queries need to be processed. This clearly
demonstrates the complexity of the reverse top-k query for large data sets
and motivates parallel processing with MapReduce. All data sets are stored in
HDFS as plain text files.

Queries. Depending on the chosen query point, the size of the result set
may vary, thus affecting the efficiency of the evaluated algorithms. As such,
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Table 4 Experimental parameters and values.

Parameter Values

Data set S distribution UN, CO, AC, TPC-H
Data set W distribution UN, CL
Dimensionality (n) 2, 4, 6
|W | (in GB) 5, 10, 50, 250, 500, 1000
|S| (in GB) 5, 250, 500, 1000
k 10, 20, 30
Query point q (ratio |R|/|W |) 20%, 40%, 60%, 80%

P (segments per dimension)
6, 8, 10(WV), 12, 14, 16(BB),
18, 20, 22

we experiment with different query points, which produce varying sizes of
result sets. We choose four query points, based on the percentage of weighting
vectors that are reported in the final result set, namely 20%, 40%, 60% and
80%. After executing this set of experiments, we adopt the 40% query point as
the default choice for the rest of the experiments. In cases where a new query
point must be generated (i.e., when varying the dimensionality), we select new
query points, having 40% result set size ratio.

Partitioning. The DiPaRT algorithm operates on a random partition-
ing of weight vectors, thus we simply experiment with varying the number of
evenly distributed partitions. On the contrary, DiPaRT+ can exploit two par-
titioning schemes, namely the angle-based and grid-based partitioning. The
former splits each angular dimension of the n-sphere to c evenly distributed
segments producing cn−1 partitions, while the latter splits each Cartesian di-
mension to c segments resulting to cn evenly distributed partitions. In grid
based partitioning some partitions are pruned away because they contain no
weighting vectors, thus resulting to fewer than cn partitions. In the following,
we first experiment with different values of c for both angular and grid based
partitioning, in order to find the best-performing values that will be used as
default. Notice that for both DiPaRT and DiPaRT+, the number of partitions
is a crucial choice which defines the number of Reduce tasks to be executed,
thus highly affecting performance.

Metrics. Our main performance metric is the execution time needed for
each experiment (job) to complete. We report the total time divided into two
parts, namely Map and Reduce, as indicators of the workload assigned to the
corresponding phases.

The rest of the metrics quantify the pruning effectiveness achieved for W
and S data sets, in the various stages of query processing. We report the
number of vectors: (a) given as input W to the job, (b) survived by early
termination of Reduce tasks (indicated as W ′′), and (c) reported to the final
result set (denoted R(S,W, k, q)). Furthermore, we report the number of data
objects: (a) given as input S to the job, (b) survived by the dominance prun-
ing (denoted S′) and (c) given as input to the non-early-terminated Reduce
tasks (denoted S′′). Notice that unlike the former two data objects metrics,
the size of S′′ indicates replicated data objects. Additionally we measure the
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Fig. 7 Performance of advanced pruning techniques for various sizes of data set S.

individual sizes of pruned replicated data objects, to demonstrate a direct
comparison between the various pruning techniques introduced in this paper.
More specifically, we report the number of replicated data objects that were
pruned by: (a) either BB or WV pruning, (b) precedence pruning performed
in Map phase and (c) early termination pruning of Reduce tasks.

To demonstrate the merit of early termination, we also report the percent-
age of Reduce tasks that terminated early. Notice the use of log-scale in all
charts, except from the ones reporting execution time.

Evaluation Methodology. The limitations of centralized approaches have
already been discussed in Section 7.1. Thus, we turn our attention to DiPaRT
and DiPaRT+, providing a head-to-head comparison between them, in order
to clearly present the advantages of DiPaRT+. Then, we focus on DiPaRT+
and conduct a thorough sensitivity analysis that demonstrates both the effi-
ciency and scalability of our proposed algorithm. For both pruning techniques,
BB and WV, discussed for DiPaRT+, we vary the sizes of both data sets S
and W , their data distributions, the dimensionality n, the value of k, the par-
titioning scheme P and the query point q. The parameter values are shown
in Table 4, with default values in bold. In each experiment, we vary a single
parameter, while setting the others to their default values.
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Fig. 8 Performance of advanced pruning techniques for various distributions of data set S.

7.2.2 Comparison of DiPaRT against DiPaRT+

For this set of experiments, we employ the 4-dimensional TPC-H data set S
consisting of 125 million data objects, while we vary the size of the data set
W from 5 to 50 GBs using UN distribution. The parameter k is set to 20,
and the query point is selected to have 40% result ratio. DiPaRT is config-
ured to run with 150 partitions (i.e., Reduce tasks), whereas DiPaRT+ is set
with 216 angular partitions. These values have been identified experimentally
and are the best in terms of execution time for both algorithms. Notice that
DiPaRT’s performance degrades for larger number of partitions due to the
network overhead produced by increased replication of

⋃
S′i.

Figure 5 demonstrates the comparative performance of our algorithms.
In Figure 5a, the total length of the bar corresponds to the execution time of
each algorithm, and it is split to show the cost of Map and Reduce individually.
DiPaRT+ is always faster than DiPaRT for all sizes of the W data set. The
Map phase of DiPaRT+ is slightly more expensive than its Reduce phase,
due to the pruning of data objects performed in Map tasks; this effective
pruning however, enables its Reduce tasks to either terminate early, or process
fewer data objects in their top-k queries. The increase of Map phase workload
appearing at the 50GB data set W , is mainly due to the increased cost of
loading the input data from HDFS.
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Figure 5b shows that the early termination technique employed in Di-
PaRT+ prunes more weighting vectors. Interestingly, this pruning effective-
ness comes at a much lower processing cost, as it manages to terminate early
approximately half of DiPaRT+’s Reduce tasks. Figure 5c shows that the num-
ber of replicated data objects (S′′) processed by Reduce tasks of DiPaRT+ is
nearly three orders of magnitude fewer than those of DiPaRT. This is due to
the pruning of replicated data objects employed in DiPaRT+. In summary, as
expected, DiPaRT+ consistently outperforms DiPaRT.

Moreover, we tested DiPaRT by using an even larger set of weighting vec-
tors W (500GB), and noticed that it requires more than 5 hours of processing
time, whereas DiPaRT+ scales gracefully for larger input sizes, as will be
shown in Section 7.2.3. Therefore, in the following, we turn our attention to
the sensitivity analysis of DiPaRT+, for experimenting with larger input vol-
ume of data.

7.2.3 Sensitivity Analysis

In this section, we conduct a large variety of experiments to study the perfor-
mance and pruning effectiveness of DiPaRT+, when using either BB or WV
pruning.

Varying q. In Figure 6, we test the performance of DiPaRT+ for queries
with increasing size of result sets. Figure 6a shows that DiPaRT+ with WV
pruning constantly outperforms BB pruning. The Map phase of WV is more
expensive than BB, as expected by the complexity analysis of DiPaRT+. How-
ever, the higher Map pruning effectiveness performed by WV, results in much
lower workload of its Reduce phase. In Figure 6b, WV achieves much better
pruning effectiveness for weighting vectors, while Figure 6c shows that more
data points are given as input to Reduce tasks as the result size is increased.
Furthermore, as shown in Figure 6d, the effectiveness of both WV and BB
pruning decreases for larger result set sizes, having also fewer data objects
pruned by early termination. Notice that BB pruning is configured to use
more partitions in order to achieve its best possible performance. Hence, BB
pruning experimental results have larger sizes of replicated data objects.
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Fig. 10 Performance of advanced pruning techniques when increasing the dimensionality.

Varying number of partitions. An important parameter for both BB
and WV is the number of partitions, as it directly affects the number of Re-
duce tasks. Thus, in Figure 9, we evaluate the performance of both pruning
techniques for different numbers of partitions. First, we see that WV is more
stable than BB, whose performance degrades for smaller number of partitions.
This is due to its limited capability of effectively pruning data points. Second,
we see that the best performance is achieved at 1000 partitions for WV, and at
3476 partitions for BB. Third, the best performance of WV is better than the
one of BB. For the remaining experiments, we use the values above as default,
unless stated otherwise.

Both BB and WV pruning techniques appear to have an optimal number of
partitions. For WV, this optimal number is less than that of BB pruning, due to
the former’s ability to use tighter bounds. By using too many partitions, both
pruning techniques have increased resource requirements since their Map tasks’
time complexity depends on the number of chosen partitions (Section 6.3). On
the other hand, by using too few partitions, the corresponding WV and BB
pruning bounds are less tight, resulting to reduced pruning effectiveness and
performance.

Varying |S|. Figure 7a shows that the impact of increased size of S on the
performance of DiPaRT+ for any pruning (WV or BB) is rather small. As we
increase |S| from 250GB to 1TB, the execution time increases only slightly.
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Fig. 11 Performance of advanced pruning techniques for various values of top-k.

Map tasks require more time to load larger data sets from HDFS, affecting the
overall performance of the job. However, the workload of the Reduce phase is
greatly decreased for larger sizes of S, thus mitigating the impact of Map tasks
to the overall performance. The reason that the Reduce phase is faster for larger
|S| is that more Reduce tasks terminate early for larger sizes of S. WV pruning
constantly outperforms BB pruning for this set of experiments, as the former
outputs fewer weighting vectors and data objects to its Reduce tasks. Figure 7b
shows that as |S| increases, the effectiveness of WV pruning weighting vectors
increases as well. Similarly, WV is able to prune more replicated data objects,
for larger sizes of data set S, as depicted in Figure 7d.

Varying the data distribution of S. Figure 8a shows that for CO and
UN data distributions, WV pruning performs better than BB, whereas this
behavior is reversed for AC. Notice that this is the only setup in our experi-
mental study, where BB pruning outperforms WV. This situation is explained
by the fact that none of the Reduce tasks of WV manages to terminate early
in the case of AC data distribution. The result size ratio for AC, is close to
100% of |W |, explaining the fact that zero Reduce tasks terminate early. On
the other hand, the CO distribution has a lower result set size, enabling WV
to prune many more weighting vectors than BB, as shown in Figure 8b. Also
for CO, the amount of data objects given as input to Reduce phase is much
smaller for WV pruning (Figure 8c). In contrast, in the case of AC, the input
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Fig. 12 Performance of advanced pruning techniques when varying the data distribution
of W .

for the Reduce tasks of WV is larger. The effectiveness of data objects pruning
of BB is justified by the fact that BB pruning uses a more detailed partitioning
scheme (i.e., larger number of partitions), enabling the pruning of more data
objects, as shown in Figure 8d.

Table 5 Values used while varying dimensions.

2D 4D 6D

|S| data objects 18B 11B 8B
file size 500GB 500GB 500GB

|W | weight vectors 23B 14B 11B
file size 500GB 500GB 500GB

|P| angle based 300 1000 1024
|P| grid based 1196 3476 4971

Varying dimensionality. Table 5 demonstrates the parameters and data
set sizes used in this set of experiments. For comparative purposes, we keep
the size of all data sets equal to 500GB, each containing different number of
data objects and vectors, depending on dimensionality.

Figure 10a shows that higher dimensional data sets require much higher
execution time. This is expected for top-k and reverse top-k queries, since
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Fig. 13 Performance of advanced pruning techniques for various sizes of data set W .

pruning becomes more difficult for higher dimensions. Figure 10c also shows
that the size of S′′ gets larger for more dimensions. This means that pruning
of S is less effective for more dimensions, especially for BB pruning method
(depicted in Figure 10d). The main performance impact, in the case of 6-
dimensional data, is the fact that the Reduce phase gets highly overloaded by
data points S.

Varying k. Figure 11 shows that increasing the value of k, results in higher
execution time, mainly due to increased processing cost in the Reduce phase,
since reverse top-k processing is more costly for higher values of k. This is
expected as |R(S,W, k, q)| also increases with k (shown in Figure 11b). In
contrast, the Map tasks are not significantly affected by the increase of k,
as only memory-based pruning requires maintaining and processing buffers of
larger size, but this overhead is negligible. WV pruning proves to be more
efficient than BB pruning, regardless of the value of k. The amount of data
objects surviving in Reduce phase increases for higher values of k, as shown in
Figure 11c. However, WV pruning reports at least an order of magnitude fewer
data points than BB in the Reduce phase, mainly due to the early termination
pruning shown in Figure 11d.

Varying the distribution of W . Using clustered distribution for weight-
ing vectors, while keeping the query point fixed, results to smaller result set
size, thus increasing the efficiency of DiPaRT+, as depicted in Figure 12a. The
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Map phase of DiPaRT+ is naturally unaffected by the distribution of weighting
vectors, for both WV and BB pruning, as no processing of weighting vectors
takes place. However, the Reduce phase benefits by the early termination prun-
ing method for clustered weighting vectors, as more Reduce tasks terminate
early. Figure 12b shows that WV pruning is more effective than BB, since twice
as many weighting vectors are given as input for reverse top-k processing to
BB compared to WV.

Varying |W |. Figure 13 depicts the scalability of DiPaRT+ when increas-
ing the size of data set W . In terms of execution time, WV is always faster
than BB, as depicted in Figure 13a. For both pruning techniques, the increase
of execution time is proportional to the increase of |W |. The effectiveness of
weighting vectors pruning and the result set size are also proportional to |W |,
as shown in Figure 13b. Pruning techniques of data objects in S, are unaffected
by the size of data set W , as shown in Figures 13c, 13d.

8 Related Work

Efficient top-k query processing has attracted much attention in the database
research community; for a survey we refer to [14]. Distinguished work includes
among others Onion [5], Prefer [13], and branch-and-bound search [25]. Reverse
top-k queries [26,27] have been proposed for assessing the impact of a potential
product in the market, based on the number of users that have this product
in their top-k results, including a branch-and-bound algorithm [28]. Moreover,
the applicability of reverse top-k queries for discovering similar products has
been studied in [12]. Also, multiple related topics have been studied, such
as why-not questions on reverse top-k queries [10], a unified framework for
rank-aware queries [6], as well as query operators (reverse k-ranks query [30]
and maximum rank query [17]) with similarities to reverse top-k but different
semantics. Recently, the problem of monochromatic reverse top-k in higher
dimensions has also been addressed [24].

Evaluation of multiple top-k queries has been studied in [11]. The pro-
posed methods exploit the fact that similar queries share common results to
avoid evaluating the top-k queries one-by-one. Another approach for evaluat-
ing multiple top-k queries has appeared in [29]. The proposed framework can
be employed to process reverse top-k queries efficiently, however it requires
to pre-process all top-k queries in W , and then build an index over the k-th
ranked objects of each query.

Due to the inherent limitations of various query processing tasks in MapRe-
duce [8], several studies have proposed modifications to its internal operation to
improve efficiency. For example, HadoopDB [1] is a hybrid system that installs
a database system on each node and connect these nodes by means of Hadoop
as the task coordinator and network communication layer. HaLoop [3] is a
system designed for supporting iterative data analysis, which requires changes
in terms of caching data, scheduling of iterative tasks to the same nodes to
exploit the local caches, etc. Sailfish [21] improves performance by reducing
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the number of disk accesses. Instead of writing to intermediate files at map
side, data is shuffled directly and then written to a file at reduce side, one file
per reduce task.

Another category of research papers propose efficient query processing al-
gorithms for MapReduce that operate “on top of” Hadoop, without chang-
ing its internals. Our work belongs to this category. In this context, scalable
processing of other preference-aware queries, such as skyline and reverse sky-
line queries, has been studied in [19,20] for parallel environments (including
MapReduce). RanKloud [4] has been proposed for top-k retrieval and relies
on computing statistics (at runtime) during scanning of records, and then
uses these statistics to compute a threshold for early termination. Parallel
processing of top-k joins in MapReduce using histograms that enable early
termination has been proposed in [23]. In [15], algorithms for k-nearest neigh-
bor joins in MapReduce are proposed. Ranked spatial preference queries using
keywords in the context of MapReduce have been studied in [9].

9 Conclusions

In this paper, we present a parallel and scalable solution to the problem of re-
verse top-k computation. To this end, we introduce an algorithmic framework
and provide implementations of two algorithms as instances of the framework.
Our most efficient solution (DiPaRT+) owes its efficiency and scalability to
useful pruning properties that eagerly discard data objects and user prefer-
ences while not compromising the correctness of the result set. Notable features
of our solution include that it operates “on top of” vanilla Hadoop without
requiring any changes of its internal operation, and that it provides the cor-
rect result in a single MapReduce job thereby saving the overheads related
to scheduling chained jobs. Our experiments demonstrate the efficiency of our
approach for data sets more than four orders of magnitude larger than those
used in the centralized reverse top-k query processing literature by now.
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