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Abstract Cluster analysis over Moving Object Databases (MODs) is a challenging
research topic that has attracted the attention of the mobility data mining commu-
nity. In this paper, we study the temporal-constrained sub-trajectory cluster analysis
problem, where the aim is to discover clusters of sub-trajectories given an ad-hoc,
user-specified temporal constraint within the dataset’s lifetime. The problem is chal-
lenging because: (a) the time window is not known in advance, instead it is specified
at query time, and (b) the MOD is continuously updated with new trajectories. Exist-
ing solutions first filter the trajectory database according to the temporal constraint,
and then apply a clustering algorithm from scratch on the filtered data. However, this
approach is extremely inefficient, when considering explorative data analysis where
multiple clustering tasks need to be performed over different temporal subsets of the
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database, while the database is updated with new trajectories. To address this problem,
we propose an incremental and scalable solution to the problem, which is built upon a
novel indexing structure, called Representative Trajectory Tree (ReTraTree). ReTra-
Tree acts as an effective spatio-temporal partitioning technique; partitions inReTraTree
correspond to groupings of sub-trajectories, which are incrementally maintained and
assigned to representative (sub-)trajectories. Due to the proposed organization of sub-
trajectories, the problem under study can be efficiently solved as simply as executing
a query operator on ReTraTree, while insertion of new trajectories is supported. Our
extensive experimental study performed on real and synthetic datasets shows that our
approach outperforms a state-of-the-art in-DBMS solution supported by PostgreSQL
by orders of magnitude.

Keywords Cluster analysis · Temporal-constrained (sub-)trajectory clustering ·
Moving objects · Indexing

1 Introduction

Nowadays, huge volumes of location data are available due to the rapid growth of
positioning devices (GPS-enabled smartphones, on-board navigation systems in vehi-
cles, vessels and planes, smart chips for animals, etc.). This explosion of data already
contributes in what is called the Big Data era, raising new challenges for the mobility
data management and exploration field (Giannotti et al. 2011; Pelekis and Theodoridis
2014).

Efficient and scalable trajectory cluster analysis is one of these challenges (Zheng
2015; Yuan et al. 2017). The research so far has focused on adapting well-known
solutions that are effective for legacy data types to trajectory datasets. Thus, a typical
approach is to transform trajectories tomulti-dimensional (usually, point) data, in order
for well-known clustering algorithms to be applicable. For instance, CenTR-I-FCM
(Pelekis et al. 2011) builds upon a Fuzzy C-Means variant. Another approach is to
focus on effective and efficient trajectory similarity search, which is the basic building
block of every clustering approach.Once one has defined an effective similaritymetric,
she can adapt well-known algorithms to tackle the problem. For instance, TOPTICS
(Nanni and Pedreschi 2006) adapts OPTICS (Ankerst et al. 1999) to enable whole-
trajectory clustering (i.e. clustering the entire trajectories), and TRACLUS (Lee et al.
2007) exploits on DBSCAN (Ester et al. 1996) to support sub-trajectory clustering.

Sub-trajectory clustering is a typical cluster analysis problem in Moving Object
Databases (MOD). Figure 1 illustrates a working example, i.e. a dataset consisting of
four trajectories, T1, . . ., T4 (please note that the time dimension has been ignored for
visualization reasons). Upon this dataset, the goal of sub-trajectory cluster analysis is
to identify two clusters (coloured red and blue, respectively) and five outliers (coloured
black). The challenging issue is to depart from the (entire) trajectory grouping into
clusters, by first identifying the best partitioning of each trajectory into sub-trajectories
and then performing cluster analysis upon those entities. For instance, due to the
deviation of the trajectories illustrated in Fig. 1a at the end of their lifespan, clustering
the entire trajectories might probably result to either no cluster at all (with all four
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Fig. 1 Four trajectories a before, b after sub-trajectory clustering

trajectories labelled as outliers) or a single cluster consisting of all four trajectories;
with the result depending on the sensitivity of the underlying trajectory similarity
function and auxiliary parameters of the clustering algorithm. On the other hand,
working at the sub-trajectory level we will be able to identify the red and blue clusters
of sub-trajectories as well as the black outliers (see Fig. 1b).

Finding a solution to the above described sub-trajectory clustering problem is chal-
lenging; what is even more challenging, is how one can support incremental and
progressive cluster analysis in the context of dynamic applications, where (i) new
trajectories arrive at frequent rates, and (ii) the analysis is performed over different
portions of the dataset, and this might be repeated several times per analysis task.

As motivational example, consider the Location-based Services (LBS) scenario
where LBS users transmit their trajectories to a central LBS server, e.g. when their trip
is completed. From the server side, a MOD system is responsible for organizing user
traces, aiming to support extensive (usually incremental and explorative) querying and
mining processes. Since users (the data producers) transmit their location information
in batchmode and asynchronously, the underlyingdatamanagement framework should
be able to handle this kind of information transmission. In other words, as we are
especially interested in cluster analysis, the data server should be able to cluster users’
trajectories in an incremental fashion. Clearly, the above techniques fail to meet such
a specification.

Coming back to the example of Fig. 1, two main challenges need to be confronted:
(i) given the addition of a new trajectory in the existing set of four trajectories, how
can cluster analysis be performed over the updated data without applying the (quite
expensive) clustering process from scratch, and (ii) how could we organize these
trajectories so as to retrieve clusters valid in an ad-hoc temporal period of interest,
without re-applying the clustering for the user-defined temporal period?

In this paper, we address the challenge of efficient and effective temporal-
constrained sub-trajectory cluster analysis, by proposing an incremental and pro-
gressive solution to the problem. To this end, we propose a novel indexing scheme for
large MODs, which is designed upon optimally selected samples of sub-trajectories,
called Representative Trajectories, hence the term ReTraTree. Each sub-trajectory
of this type acts as the representative of a group (cluster) of sub-trajectories. Thus,
ReTraTree may be considered as a data structure that organizes (sub-)trajectories in a
hierarchical fashion, while having small, but in any case adaptable, memory footprint.
Based on its design, ReTraTree is able to incrementally partition and cluster trajecto-
ries as they are inserted in theMOD. Interestingly, the actual clustering process for the
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user-defined temporal period of interest, called Query-based Trajectory Clustering
(QuT-Clustering), is performed as simply as a query execution upon the ReTraTree.

The contributions of our work are summarized below:

• we introduce the temporal-constrained sub-trajectory cluster analysis problem,
which is a key problem for supporting progressive clustering analysis;

• we design ReTraTree, an efficient indexing scheme for large dynamic MODs,
which is based on representative trajectories found in the dataset;

• as a solution to the problem of study, we devise QuT-Clustering, a sub-trajectory
clustering algorithm running as simply as a query operator upon ReTraTree;

• we facilitate incremental trajectory cluster analysis by exploiting the incremental
maintenance ofReTraTree alongwith the query-based clustering approach ofQuT-
Clustering;

• we perform an extensive experimental study upon real and synthetic datasets,
which demonstrates that our in-DBMS implementation outperforms a state-of-
the-art PostgreSQL extension by several orders of magnitude.

The rest of the paper is organized as follows: Sect. 2 formally defines the problem of
temporally-constrained sub-trajectory cluster analysis. Section 3 presents the ReTra-
Tree structure and its maintenance algorithms while Sect. 4 puts ReTraTree in action,
in other words it provides the QuT-Clustering algorithm, also providing a complexity
analysis of the entire framework. Section 5 presents our experimental study. Section 6
reviews related work. Section 7 concludes the paper and outlines future research direc-
tions.

2 Problem setting

In this section, we provide the necessary definitions and terminology. Table 1 summa-
rizes the definitions of the symbols used in the paper.

Definition 1 (Voting between segments of two trajectories) Given two segments e and
e′ belonging to trajectories T and T ′, respectively, the voting function V (e, e′) that
calculates the voting e receives by e’ is given by Eq. (1):

V
(
e, e′) = e− d2(e,e′)

2·σ2 (1)

where the control parameter σ > 0 shows how fast the function (“voting influence”)
decreases with distance.

Since Euclidean distance D(t) is symmetric, distance d(e, e′) is symmetric as well.
As such, it holds that V (e, e′) = V (e′, e); it also holds that 0 ≤ V (e, e′) ≤ 1. If
the two segments are almost identical, i.e. distance d(e, e′) is close to zero, the voting
function gets value close to 1. On the other hand, high values of distance d(e, e′) result
in voting close to zero.

We can generalize the above discussion to define the representativeness of a tra-
jectory with respect to another trajectory. Notice that the definition that follows is
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Table 1 Symbol table

Symbols Definitions

D A dataset D = {T1, . . ., TN} of N trajectories

T A trajectory of D, whose length is |T | (in terms of number of
points composing it)

xt.s (xt.e) Starting (ending) timestamp of the time-varying object x , e.g.
Tt.s (Tt.e) is the minimum (maximum) timestamp of trajectory T

l Lifespan of D, namely the temporal period [min(Tt.s),max(T ′
t.e)),∀ T , T ′ ∈ D

pi i-th (3D) point of trajectory T , pi = (xi, yi, ti)

ei i-th (3D) line segment of T , ei = (pi, pi+1)

li Lifespan of line segment ei, namely the temporal period [ti, ti+1)

S Set of sub-trajectories partitioning trajectory T

Si i-th sub-trajectory of trajectory T

V (e, e′) Voting function between two segments e and e′ belonging to
trajectories T and T ′, respectively

V T ′
T Voting descriptor of trajectory T with respect to T ′

V D
T Voting descriptor of trajectory T with respect to trajectory dataset D

VT
D Voting of a trajectory dataset D with respect to T

V D′
D Voting descriptor of trajectory dataset D with respect to trajectory

dataset D′
R Sample of representative sub-trajectories R = {R1, . . . , RM}
C Clustering of sub-trajectories in M clusters,C = {CR1 , . . . ,CRM },

CRi ∩ CR j = ∅, i �= j, with sub-trajectory Ri representing
cluster CRi of sub-trajectories

M Cardinality of C (and R)

Out Set of outlier sub-trajectories

W The user-defined time window (W ∈ l) for which we want to
discover the sub-trajectory clusters

applicable to sub-trajectories as well (since a sub-trajectory is itself a trajectory, essen-
tially a set of consecutive segments).

Definition 2 (Voting descriptor and average voting of a trajectory with respect to
another trajectory) Given a trajectory T of length |T | and another trajectory T ′, the
voting descriptor V T ′

T of T with respect to T ′ is a vector

V T ′
T : (

V (e1, ∗) , . . . , V
(
e|T |−1, ∗

))
(2)

of dimensionality |T | − 1 where wildcard ‘∗’ corresponds to the segment of T ′ that
minimizes distance d(ei , ·), i = 1, . . ., |T | − 1. By avg

(
V T ′
T

)
we denote the average

of the values of the vector V T ′
T of trajectory T with respect to trajectory T ′.

Obviously, the voting descriptor is not symmetric, i.e. V T ′
T �= V T

T ′ .
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Definition 3 (Voting descriptor of a trajectory with respect to a trajectory dataset)
Given a trajectory dataset D and a trajectory T of cardinality |T |, T /∈ D, the voting
descriptor V D

T of T with respect to D is a vector

V D
T :

(
∑

T ′∈D
V (e1, ∗) , . . . ,

∑

T ′∈D
V

(
e|T |−1, ∗

)
)

(3)

of dimensionality |T | − 1 where wildcard ∗ corresponds to the segment of each T ′ in
D that minimizes distance d(ei , ·), i = 1, . . ., |T | − 1.

Recall that (i) the vote a segment can receive by another segment is a value ranging
from 0 to 1, according to Eq. (1), and (ii) only one segment from each trajectory votes
for a given segment of another trajectory, i.e. its nearest. This implies that the total
voting—the sum of votes—received by a given segment is a value ranging from 0 (if
all members of D vote 0) to N (if all members of D vote 1). To exemplify the above,
back to the example of Fig. 1, voting descriptor V {T2,T3,T4}

T1
presents in general higher

values than voting descriptor V {T1,T2,T3}
T4

since T1 is more centrally located than T4 in
the dataset.

Definition 4 (Voting of a trajectory dataset with respect to a trajectory) Given a
trajectory dataset D of cardinality N and a trajectory T of cardinality |T |, T /∈ D,
voting V T

D of D with respect to T is a value

V T
D =

∑

T ′∈D
avg

(
V T
T ′

)
(4)

that accumulates the average voting of all trajectories T ′ ∈ D with respect to T .

Definition 5 (Voting of a trajectory dataset with respect to another trajectory dataset)
Given a trajectory dataset D of cardinality N and another (reference) trajectory dataset
D′ of cardinality N ′, D ∩ D′ = ∅, voting V D′

D of D with respect to D′ is a value
calculated as follows:

V D′
D =

∑

T∈D′
V T
D (5)

Now we define the temporally-constrained sub-trajectory clustering problem that
we address in this paper. Let W represent a time window within the lifespan of D, i.e.
W ∈ l. Further, let DW denote the set of sub-trajectories partitioning the trajectories
in D, which are temporal-constrained within W . Formally:

Problem (Temporal-constrained sub-trajectory clustering) Given (i) a trajectory
databaseD = {T1, . . ., TN }of lifespan l, consistingofN trajectories ofmovingobjects,
and (ii) a time windowW (W ∈ l), the temporal-constrained sub-trajectory clustering
problem is to find: (a) a set C = {CR1, . . . ,CRM } of M clusters of sub-trajectories,
CRi ∈ DW , i = 1, . . ., M , around respective sub-trajectories R = {R1, . . ., RM },
Ri ∈ CRi , i = 1, . . ., M, called representative sub-trajectories, and (b) a set Out of
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outlier sub-trajectories, Out ∈ DW , so that voting V R
DW−R of dataset DW -R with

respect to R is maximized:

(R,C, Out) = argmax
(
V R
DW−R

)
(6)

The above problem is quite challenging, for a number of reasons. First, the seg-
mentation (or partitioning) of trajectories found in D in sub-trajectories cannot be
predefined nor is the result of a third-party trajectory segmentation algorithm, such as
(Buchin et al. 2010; Lee et al. 2007; Li et al. 2010b). Instead, it is problem-driven:
it is the clustering algorithm that solves the above problem that is responsible to find
the best segmentation of trajectories into sub-trajectories. Practically, it is the clus-
tering algorithm that is responsible to detect the red and blue parts of trajectories in
Fig. 1, given that the analyst requires a clustering providing as time window W the
whole lifespan of the dataset. Second, the optimization of the above scenario is a hard
problem, since the solution space is huge. Third, one has to define the technique for
selecting the set of the most representative sub-trajectories, whose cardinality M is
unknown. Fourth, as already discussed, in a real MOD setting, the solution should
support incremental updates. Put differently, data updates should be accommodated
as soon as they come and update the existing clusters at low cost, instead of performing
a new clustering process from scratch. Finally and most importantly, since clustering
is applied over different portions of the dataset, and this might be repeated several
times per analysis task, the solution to the problem should be repeatable for all the
different time windows W that are of interest during explorative analysis. This com-
prises a novel feature and amajor contribution of our work, since existing solutions for
sub-trajectory clustering are not able to support progressive clustering analysis taking
into account temporal constraints as filters.

3 The ReTraTree indexing scheme

We start this section with an overview of the ReTraTree indexing scheme (Sect. 3.1)
andwe continue with the algorithms that are necessary for its maintenance (Sects. 3.2–
3.4).

3.1 ReTraTree overview

ReTraTree consists of four levels: the two upper levels operate on the temporal
dimension while the 3rd level is built upon the spatio-temporal characteristics of the
trajectories. The idea is to hierarchically partition the time domain by first segment-
ing trajectories into sub-trajectories according to fixed equi-sized disjoint temporal
periods, called chunks (1st level partitioning). Then, each chunk is organized into sub-
chunks, which form a partitioning of sub-trajectories within each chunk (2nd level
partitioning). Notice that sub-chunks may overlap in time, i.e. they are not temporally
disjoint.
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Fig. 2 Six trajectories, spanning
in 2 days, split into daily chunks
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T3T4

T1

Day 1
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T3T4

T2

Day 2
T6

Example 1 Figure 2 illustrates six trajectories, T1, . . ., T6 spanning in two days (called
Day 1 and Day 2). The dataset is split into two chunks at day-level, with mauve (green)
colored sub-trajectories corresponding to the evolution of moving objects on Day 1
(Day 2, respectively). Furthermore, the chunk corresponding to Day 1 is subdivided to
two sub-chunks, corresponding to 〈T1, T2, T3, T4〉 and 〈T5, T6〉, respectively. Although
not illustrated in the figure, the first sub-chunk is valid during [20:00, 0:00) of Day
1 while the second sub-chunk is valid during [22:00, 0:00) of Day 1, thus they are
overlapping in time. Especially for the first sub-chunk, we also illustrate the projection
of the four trajectories on the spatial domain, which corresponds to Fig. 1b.

Next, the sub-trajectories of each sub-chunk are clustered on the spatio-temporal
domain with a sampling-based algorithm. In the previous example, this step results in
the formation of two clusters of sub-trajectories (in red and blue) and five outlier sub-
trajectories (in black), see Fig. 1b. Thus, ReTraTreemaintains only the representatives
at the 3rd level of the structure, while the actual clustered data are archived at the 4th
level.

Figure 3 (and the paragraphs that follow) present ReTraTree in detail. Note that
the top-three levels of the ReTraTree reside in main memory and only the 4th level is
disk-resident.

1st level (chunks) The root of the ReTraTree consists of p entries, p ≥ 1, corre-
sponding to chunks sorted by time (in the example of Fig. 2, at daily level). Note that
for each chunk Hi, i = 1, . . ., p, there is no need to maintain the actual temporal peri-
ods in the index nodes since they correspond to fixed equal-length splitting intervals.
Each entry Hi maintains only a pointer to the respective set of sub-chunks Hi,n, n ≥ 1,
under this chunk. The set of all chunks forms the 1st level of the structure.

2nd level (sub-chunks) For each chunk, there is a set of sub-chunks, actually a
sequence of triples 〈Hi,n. per, Hi,n · R, Hi,n · Out〉, n ≥ 1, where per is a temporal
period [pert.s, pert.e) when the sub-chunk is valid (in the example of Fig. 2, [20:00,
0:00) and [22:00, 0:00), respectively for the two sub-chunks of Day 1), while R (Out)
are pointers to the set of representative (outlier, respectively) sub-trajectories belonging
to sub-chunk Hi,n. The sequence of triplets is ordered by 〈pert.s, pert.e〉. The set of all
sets of sub-chunks forms the 2nd level of the structure.

3rd level (cluster representatives) For each sub-chunk, the entries of set R consist
of pairs 〈Rj,CRj 〉, j ≥ 0, where each entry includes the representative sub-trajectory
Rj and a pointer CRj to the subset of sub-trajectories belonging to that sub-chunk
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Fig. 3 Overview of the ReTraTree indexing scheme

and forming a cluster around R j . Note that j = 0 implies that there may exist sub-
chunks with zero clusters (i.e. including outliers only). The set of all sets of cluster
representatives (along with the pointers to actual data) forms the 3rd level of the
structure.

4th level (raw trajectory data and outliers) The sets of actual sub-trajectories that
compose clusters CRj are stored at the 4th level of the structure. For each sub-chunk
Hi,n, there corresponds a set Di,n consisting of triples 〈sub-trajectory-id, CRj , sub-
trajectory-3D-polyline 〉 that keep the information about which sub-trajectory belongs
to which cluster. On the other hand, set Out contains the outlier sub-trajectories of
that sub-chunk. The outlier sub-trajectories are appropriately indexed in a 3D-R-tree
structure (Theodoridis et al. 1996). The clusteringprocess of sub-trajectories belonging
to a sub-chunk, during which we detect sets S andOut, is a key process for ReTraTree
and is described in detail in Sect. 5.

How ReTraTree handles a new trajectory is discussed in the subsections that follow.

3.2 Hierarchical temporal partitioning

Given a trajectory database D of lifespan l (whose duration is denoted as |l|), a new
trajectory T , and a fixed partitioning granularity p, applicable at the ReTraTree 1st
level, T is partitioned into a number of sub-trajectories Si , i ≥ 1, where the sub-
trajectory Si is the restriction of T inside a temporal period pi ,
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pi =
[ |l| · (i − 1)

p
,
|l| · i
p

)
, 1 ≤ i ≤ p

where |l|/p is the length of each time interval (i.e. the duration of the lifespan of
each chunk) and timestamps Dt.s + |l| ∗ (i − 1) /p, 2 ≤ i ≤ p are called splitting
timestamps. As such, every trajectory in the dataset is partitioned into sub-trajectories
using the same (pre-defined, according to granularity p) splitting timestamps. This
chunking process is applied incrementally, whenever a batch of new recordings from
a moving object arrives. In case of a new trajectory with temporal information that
exceeds the last existing chunk, a new chunk is created and the set of chunks CK is
extended.

At the 2nd level, each chunk is subdivided into (possibly, overlapping) sub-chunks.
Specifically, a chunk is split into sub-chunks by grouping the sub-trajectories contained
in the chunk, according to the following definition.

Definition 6 (Grouping of sub-trajectories in the same sub-chunk) Given a temporal
tolerance parameter τ and two sub-trajectories S ∈ T and S′ ∈ T ′ belonging to the
same chunk, these sub-trajectories can be grouped together in the same sub-chunk if
their starting (ending) timepoints differ at most τ/2, respectively. Formally, it should
hold that: ∣∣St.s − S′

t.s

∣∣ ≤ τ/2 ∧ ∣∣St.e − S′
t.e

∣∣ ≤ τ/2 (7)

Note that the above definition is not deterministic as there might be a sub-trajectory
S′′ ∈ T ′′ that also satisfies this condition. We handle this case by grouping the sub-
trajectories when this condition is satisfied for the first time. Thus, we do not define
and we do not search for a kind of “best-matching” sub-chunk. The reasons for this
choice is that we are in favor of a very efficient insertion process, while we do not
care about an optimal matching as this issue will be handled when the analyst asks for
a clustering analysis. Regarding tolerance parameter τ , it is a user-defined parameter
and can be exploited to impose an either stricter or looser notion of grouping. It also
implies that e.g. when τ is set to 10min, a sub-trajectory of <20min duration cannot
be grouped together with a sub-trajectory of more than 30min duration.

3.3 Sampling-based sub-trajectory clustering

As already mentioned in Sect. 3, maximizing Eq. (6) is a hard problem. In order to
tackle it we adopt a methodology for the optimal segmentation and selection of a
sample of sub-trajectories from a trajectory dataset. Thus, in Fig. 4, we outline the
Sampling-based Sub-Trajectory Clustering (S2T-Clustering) algorithm, a two-step
process that relies on a sub-trajectory samplingmethod, proposed in Panagiotakis et al.
(2012). Briefly, S2T-Clustering relies on the output of the afore-mentioned sampling
method (1st step), which is a set of sub-trajectories in theMOD that can be considered
as representatives of the entire dataset. These samples serve as the seeds of the clusters,
around which clusters are formed based on a greedy clustering algorithm (2nd step).

The first step of S2T-Clustering algorithm (line 1) invokes the Sampling method,
which aims to solve an optimization problem, namely to maximize the number of
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sub-trajectories represented in a sampling set. In a few words, Sampling calculates the
voting descriptor V D

T of all trajectories T in D with respect to D, as described in Defi-
nition 3. Then, based on this signal, each trajectory is partitioned into sub-trajectories
having homogeneous representativeness (i.e. the representativeness of all segments in
a sub-trajectory does not deviate over a user-defined threshold), irrespectively of their
shape complexity. According to Panagiotakis et al. (2012), a trajectory should have at
least w points in order for the segmentation to take place. Thus, w is an application-
based parameter of Sampling that acts as a lower bound of the length of a trajectory
under segmentation. Subsequently, Sampling selects a sampling set R = {R1, . . ., RM}
of sub-trajectories, which are hereafter considered as the representatives of D. Note
that the number M of sub-trajectories is not user-defined; instead, it is dynamically
calculated by the method itself. This is achieved by tuning Sampling with a parameter
ε (ε > 0 and ε → 0) the role of which is to terminate the internal iterative opti-
mization process when the optimization formula is lower than a given threshold (i.e.
the ε parameter). Back to the example of Fig. 1, the above voting-and-segmentation
phase would result in segmenting trajectory T1 into three sub-trajectories (coloured
red, blue, and black, respectively, in Fig. 1) according to its representativeness; simi-
lar for the rest trajectories of the MOD.) Then, Sampling would intuitively select two
sub-trajectories as representatives, one from the blue sub-trajectories, and one from
the red sub-trajectories.

At its second step (line 2), S2T-Clustering uses sampling set R in order to cluster
the sub-trajectories of the dataset according to the following idea: each sub-trajectory
in the sampling set is considered to be a cluster representative. More specifically, clus-
tering is performed by taking into account sampling set R = {R1, . . ., RM } and vector
of votes (i.e. representativeness) V

Rj
Si

(
actually we use the average votingavg

(
V

Rj
Si

))

between sub-trajectories of the original MOD Si ∈ D − R with respect to the rep-

resentative sub-trajectories Rj ∈ R. Recall that V
Rj
Si

(Definition 2) consists of |Si |
elements, where each one represents the voting that the segments of Si receive from
the segments of R j . To this end, in order for the S2T-Clustering algorithm tomaximize
Eq. (6) for the special case where the time window W corresponds to the lifespan l of
D, the cluster CRj of a representative sub-trajectory of the sampling dataset R j ∈ R,
i.e. the set of sub-trajectories that are assigned to cluster CRj , is provided by:

CRj =
{
Si ∈ D − R : avg

(
V

Rj
Si

)
≥ avg

(
V Rν

Si

)
, ∀Rν ∈ R ∧ avg

(
V

Rj
Si

)
≥ δ

}

(8)
On the other hand, set Out of outliers consists of sub-trajectories that have been

assigned to no cluster:

Out = {
Si ∈ D − R − CRj , ∀R j ∈ R

}
(9)

The algorithm outlined in Fig. 4 simply iterates through all the representative sub-
trajectories Rj ∈ R of the sampling dataset R and applies the constraints of Eq. (8).
Parameter δ is a positive real number between 0 and 1 that acts as a lower bound thresh-
old of similarity between sub-trajectories and representatives. As such, it controls the
size of the clusters C and the outlier set Out.
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Fig. 4 S2T-Clustering for
building ReTraTree sub-chunks

Algorithm S2T-Clustering
Input: MOD D = {T1 , T2 , … , TN }, ε, δ
Output: Sampling set R, Clustering C, Outlier set Out.
1. (R, S) Sampling(D, ε)
2. (C, Out) GreedyClustering(R, S, δ)
3. return (R, C, Out)

3.4 ReTraTree maintenance

S2T-Clustering does not support arbitrary time windows nor dynamic data. The addi-
tional challenge that we have to address is to efficiently support such a clustering
for arbitrary time windows and dynamic data. To achieve this, we need to efficiently
support insertions of new trajectories in the ReTraTree.

The incremental maintenance of the ReTraTree, whenever a batch of recordings of
a moving object (i.e. a trajectory T ) arrives, is supported by the ReTraTree-Insert
algorithm outlined in Fig. 5. We have already described how our method incre-
mentally performs the first phase of partitioning in the time dimension (line 1).
The update_chunks function returns the set of chunks H and the respective set of
sub-trajectories S that correspond to the input trajectory T , i.e. the sub-trajectories
Si that intersect temporally with chunk Hi. Then, the algorithm assigns each sub-
trajectory Si to an appropriate sub-chunk (lines 2–4). This is actually checked by the
find_subchunk function which, instead of applying Definition 6 between Si and the
other sub-trajectories in the sub-chunk, simply tests whether the following inequality
holds: |Si,t.s − Hi,n,t.s| ≤ τ/2 ∧ |Si,t.e − Hi,n,t.e| ≤ τ/2. To gain this efficiency, the
implicit assumption is that the temporal borders of each sub-chunk are left unchanged
since its initialization with its first sub-trajectory. If there is not a matching sub-chunk
with respect to time (line 5), a new sub-chunk is created, which is initialized with
an empty representative set R, and an outliers set Out including the unmatched sub-
trajectory (line 17). If there is an appropriate sub-chunk for the sub-trajectory under
processing (line 5), the algorithm tries to greedily assign it to the best existing cluster
(lines 6-13). If this attempt fails (line 14), the algorithm invokes ReTraTree-Handle-
Outlier algorithm (outlined in Fig. 6).

In particular, the second algorithm adds the sub-trajectory into the outliers’ set
of the sub-chunk, which acts as a temporary relation upon which S2T-Clustering is
applied, whenever the size of the relation exceeds a threshold α (e.g. α Mb that may
correspond to a percentage of the dataset) with respect to its size, at the time of the
previous invocation of the algorithm (line 2). Then, a new set of representative sub-
trajectories will extend the existing set of representatives, only if it is δ-different from
them (line 4). For each of the resulting newoutliers,we re-insert the sub-trajectory from
the top of the ReTraTree structure. This implies that we recursively apply ReTraTree-
Insert for that sub-trajectory in order to search for other sub-chunks wherein it could
be clustered or to form a new sub-chunk. This recursion is continued until an outlier
is either clustered or partitioned to smaller pieces, due to successive applications of
S2T-Clustering. In case the size of an outlier becomes smaller than w, we archive it
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Fig. 5 ReTraTree-Insert algorithm

Fig. 6 ReTraTree-Handle-Outlier algorithm

in the relation containing the raw data. Before applying a clustering analysis task and
if the tree has been updated since the insertion of this specific trajectory, we give a
last chance to these small outliers to be clustered by re-dropping them from the top
of the structure. In other words, for a (sub-)trajectory Tk, if its length |Tk| < w and
Tk has not been assigned to a cluster, then, since it cannot be further segmented (and
thus become again candidate to be clustered in a different sub-chunk); it cannot also
be clustered before new trajectories update the tree.

4 ReTraTree in action

ReTraTreemaintains clustered sub-trajectories at its leaves. However, given a temporal
period, it is not enough to retrieve the clusters (i.e. the sub-trajectories “following” the
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Fig. 7 Representatives of a chunk with two sub-chunks (dashed vs. continuous polylines) organized in a
temporal priority queue of two groups (blue vs. red polylines) (Color figure online)

representatives) that overlap this period. The reason is that the sub-trajectory clustering
of overlapping sub-chunks may form representatives that: (a) are almost identical (as
such, a ‘merge’ operation should take place in order to report only one cluster as the
union of the two (or more) clusters built around the similar representatives), and/or
(b) can be continued by others (as such, an ‘append’ operation should take place to
identify the longest clusters, i.e. representatives).

In other words, an algorithm is required that takes ReTraTree as input and searches
within it in order to identify the longest patterns with respect to the user requirements
(e.g. discover all valid clusters during a specific period of time). This is made feasible
through appropriate ‘merge’ and ‘append’ operations applied to the query results. To
the best of our knowledge, such a query-based clustering approach is novel in the
mobility data management and mining literature.

4.1 QuT-clustering

Given two representatives Ri and Rj if (a) the two representatives have the same
lifespan with respect to threshold τ and (b) the two representatives are also similar
w.r.t. similarity threshold δ (this means that they origin from different sub-chunks),
then this implies a ‘merge’ operation. On the other hand, if (a) Ri ends close to the
timepoint when the Rj starts with respect to threshold t , (b) the Euclidean distance
of the last point of Ri is close (with respect to a distance threshold d) to the first
point of Rj, and (c) a sufficient number of the same moving objects are represented
by both representatives (with respect to a percentage threshold γ ), this implies an
‘append’ operation. Figure 7 illustrates representatives of a chunk consisting of two
chunks. A merge operation occurs between R1 and R2, whereas R5 and R6 will both
be maintained in the final outcome although they have similar lifespans. An append
operation occurs between R3 and R4.

Algorithm QuT-Clustering provided in Fig. 8 proposes such a solution on top of
ReTraTree. The user gives as parameters the period of interest W , and the algorithm
traverses the tree and returns clusters valid in this period.

More specifically, the algorithm initially finds the chunks and then the sub-chunks
that overlap the given period (lines 1–3). These sub-chunks are organized in a pri-
ority queue (line 4), which orders groups of representatives of the sub-chunks. Each
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Fig. 8 QuT-Clustering algorithm

group contains temporally successive representatives that are at most in temporal dis-
tance τ from each other. To exemplify this ordered grouping of sub-chunks, Fig. 7
shows the representative sub-trajectories (excluding outliers) of a single chunk, which
consists of two sub-chunks, distinguished as dashed vs. continuous polylines. Note
that for simplicity, y-dimension is omitted and specific borders of sub-chunks are not
depicted,while the representatives form two groups, colored blue and red, respectively.
Subsequently, the algorithm pops each group one-by-one and sorts all representatives
with respect to time dimension, by interleaving the already sorted (from the step that
constructs the priority queue) representatives coming from different sub-chunks (line
6). This is done by including representatives left from a previous round of the algo-
rithm. Then, the algorithm sweeps the temporally interleaved representatives along the
time dimension (line 7) and, for each of them, identifies the subset of its subsequent
representatives in time that their lifespan overlap with the lifespan of the currently
investigated representative, after the extension of the latter towards the future by t
timepoints. For each pair of representatives Rj and Rk, the algorithm checks whether
a merge operation (lines 10–12) or an append operation (lines 13–15) is necessary. In
any other case (line 17) the algorithm simply continues with the next representative,
and maintains both representatives intact. After each sweep, the algorithm maintains
in the next round only those representatives that end at most τ seconds before the
border of the current chunk (e.g. R7, in Fig. 7), as candidates for merging with subse-
quent representatives (lines 18–20). The rest of the representatives are part of the final
outcome of the algorithm.

Regarding the technical details, a ‘merge’ operation practically maintains (in the
working set of representatives R) one of the two representatives (e.g. the first) in the
remaining process. The other representative is appropriately flagged so as to be able to
retrieve the raw data that correspond to this cluster, if needed. For the ‘append’ opera-
tion, we need to retrieve the identifiers of the sub-trajectories (not the sub-trajectories
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themselves) that correspond to the clusters implied by the representatives and apply a
set intersection operation. This is facilitated by traditional indexing structures, such as
by indexing the pair of representative id (i.e. cluster identifier) and sub-trajectory id of
the raw data relation at the 4th level of ReTraTree. Practically, an ‘append’ procedure
replaces from the working set of representatives S the two representatives with one of
those sub-trajectories that exist in both clusters. Note that the chosen sub-trajectory
is selected randomly and it is the one used in the remaining process. Using another
non-random choice at this step would be possible but not desired, as it would imply
retrieval of the actual sub-trajectories. Finally, note that for simplicity reasons, we use
the same threshold τ to compute the equivalence classes, as well as for considering
whether two representatives refer to the same temporal period. In practice, these two
easily configured parameters may be different, depending on the analysis scenarios
pursued by the user. Similarly, threshold t corresponds to a small duration value, for
instance, t = 0 in order to be as strict as possible.

4.2 Architectural aspects

The architecture of our framework is illustrated in Fig. 9. The core of the framework
is the ReTraTree structure that is fed by either new incoming trajectories or data that
have been processed in a previous round and could not be clustered. In both cases
the ReTraTree-Insert algorithm handles the insertion. The trajectories are partitioned
according to the in-memory part of the structure and stored on disk-based partitions.
The trajectories assigned to an existing representative trajectory) are archived on disk
in clustered partitions. Instead, trajectories that were not clustered are organized on
disk in an (intermediate) outlier partition. When the size of the partitions exceeds a
threshold, the S2T-Clustering algorithmapplies theVoting process uponwhich the Seg-

Fig. 9 Architectural aspects of
ReTraTree
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Clustering 

S2T-Clustering

Partition-1 ...
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Q
uT-C

lustering
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mentation of the trajectories takes place. The resulting sub-trajectories and their voting
descriptors form the input of the Samplingmodule that selects new (i.e. non-existing)
representatives that are back-propagated to the in-memory part of the ReTraTree.
The new representative trajectories and the raw sub-trajectories form the input of the
GreedyClusteringmodule. If a sub-trajectory is clustered around a new representative,
it is archived on disk. Otherwise it is an outlier and is re-inserted to ReTraTree, as it
may now be accommodated in the index. This is due to its segmentation during the
operation of S2T-Clustering, or due to the creation of new matching sub-chunks or
representatives in the index. Finally, the analyst uses the QuT-Clustering algorithm
to perform interactive clustering analysis by providing different time windows W as
input.

4.3 Complexity analysis

Concluding the discussion about our proposal, we provide a complexity analysis of (i)
loading the ReTraTree structure and (ii) performing QuT-Clustering, according to the
algorithms proposed so far. The assumption we make throughout our analysis is that
the distribution of trajectories during the dataset’s lifetime is uniform; in other words,
selecting two random timepoints, ti and t j , the number of trajectories being ‘alive’
at ti and t j , respectively, remains more or less the same. In real world datasets, we
do not expect to find perfect compliance to this, but we believe that this is a realistic
assumption.

Lemma 1 Under the uniformity assumption, the loading cost of the ReTraTree is:

O
(
p ·

(
T̄k · N + H̄ · R̄2

)
· log (

T̄k · N/H̄ · R̄))

where H̄ is the average number of sub-chunks per chunk, R̄ is the average number of
representative sub-trajectories per sub-chunk and T̄k denotes the average number of
trajectory points in a database consisting of N trajectories.

Proof Considering that H̄ is the average number of sub-chunks per chunk and R̄
denotes the average number of representative sub-trajectories per sub-chunk, ReTra-
Tree can be considered as p balanced trees of h = 2 (excluding the root and the
3D-Rtrees found at the 1st and the 4th level of the structure, respectively) with the
upper bound for the maximum number of leaves per tree being upper bounded by
H̄ · R̄. Given the above, each sub-chunk has an average size of T̄k · N/H̄ · R̄ seg-
ments. Setting threshold α of each sub-chunk to this value, ReTraTree will invoke the
S2T-Clustering algorithm O(p · H̄ · R̄) times [result 1].

Regarding the cost of S2T-Clustering algorithm, it is composed by the costs of its
two components, namely Sampling andGreedy-Clustering (see Fig. 4). As it has been
shown in Panagiotakis et al. (2012), the most computationally intensive part of the
Samplingmethod is the voting process withO (

T̄k · N · log (
T̄k · N))

cost for each tra-
jectory in a database consisting of N trajectories indexed by a 3D-Rtree structure. Note
that in our case, we maintain a forest of such trees, where each of them corresponds

123



On temporal-constrained sub-trajectory cluster analysis 1311

to the segments of the sub-trajectories that belong to the dynamically changing set
of outliers of a sub-chunk. Therefore, in our case the number N of trajectories corre-
sponds to the number of sub-trajectories that have been assigned to this set. Regarding
Greedy-Clustering, as the voting vectors are pre-calculated during the Sampling step,
its cost is dominated by the size of the representatives set R̄. More specifically, the cost
isO (

R̄ · log (
T̄k · N))

, i.e. the cost of performing R̄ trajectory-based range queries in
the database [result 2].

Since the size of the outliers of a sub-chunk set is estimated to be T̄k ·
N/H̄ · R̄, the cost of the S2 T-Clustering algorithm in a sub-chunk is: O(
T̄k · N/H̄ · R̄ · log (

T̄k · N/H̄ · R̄) + R̄ · log (
T̄k · N/H̄ · R̄))

[result 3].
By combining results 1–3 above (i.e. multiply the p · H̄ · R̄ number of leaveswith the

cost of the S2T-Clustering algorithm of a single sub-chunk), we have proven Lemma
1. ��

From a different point of view, the cost per trajectory insertion can be split in
four parts: (i) the cost of chunking and sub-chunking the original trajectory to sub-
trajectories, (ii) for each sub-trajectory, the cost of finding thematching representative,
(iii) the cost of invoking the S2T-Clustering algorithm, which is only in case that the
sub-trajectory overflows threshold α of the sub-chunk, and (iv) the cost of checking
whether the new representatives extracted by S2T-Clustering can be inserted into the
already identified representatives. Regarding the cost of each part, that of (i) is trivial,
while that of (ii) and (iv) is O(R) in both cases, since it implies a scan on the set of
representatives, which however is small (R << N ). Obviously, the cost per trajectory
insertion is dominated by the S2T-Clustering algorithm.

Lemma 2 Under the uniformity assumption, the cost of theQuT-Clustering algorithm
is:

O
((

H̄ · R̄)2)

where H̄ is the average number of sub-chunks per chunk and R̄ is the average number
of representative sub-trajectories per sub-chunk.

Proof As already shown, under uniformity assumption, each chunk maintains O(H̄ ·
R̄) representatives. Thus, invoking QuT-Clustering will eventually scan a number of
O (�|W |/p� · H̄ · R̄)

representatives, where �|W |/p� is the number of the involved
chunks. However, at any time, the algorithm maintains a priority queue of O(H̄ · R̄)

representatives (worst case scenario). Note that sorting this priority queue costsO(H̄ ·
R̄) only, since the sets of representatives of the corresponding sub-chunks are already
sorted, thus a merge-sort performs the required temporal interleaving. Given this, as
the representatives reside in memory and there is no special organization at this level,
for each of these representatives the algorithm will scan all the other representatives

in the worst case, thus leading to O
((

H̄ · R̄)2)
cost. ��

Interestingly, the cost of the QuT-Clustering algorithm is independent to the size
of the database, thus it is a highly efficient solution for progressive temporally-
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constrained sub-trajectory clustering analysis. This is validated in the experimental
study that follows.

5 Experimental study

In this section, we present our experimental study. ReTraTree and its algorithms were
implemented in-DBMS inHermes1 MOD engine over PostgreSQL, by using the GiST
extensibility interface provided by PostgreSQL. More specifically, the top three levels
of ReTraTree that reside in memory were implemented as temporary tables, while
the 4th level was stored in traditional tables, upon which the 3D-Rtrees were built.
Although our proposal is generic, we chose to put extra effort to implement it on a real-
worldMODmanagement system rather than an ad hoc implementation, because of the
initially placed goal to support progressive clustering analysis. We argue that this is an
important step towards bridging theMODmanagement andmobility mining domains,
as state-of-the-art frameworks (Giannotti et al. 2011) could make use of the efficiency
and the advantage of our proposal to execute clustering analysis tasks via simple
SQL. This way, our approach becomes practical and useful in real-world application
scenarios, where concurrency and recovery issues are taken into consideration.

All the experiments were conducted on an Intel Xeon X5675 Processor 3.06GHz
with 48GB Memory running on Debian Release 7.0 (wheezy) 64-bit. We used
PostgreSQL 9.4 Server with the default configuration for the memory parameters
(shared_buffers, temp_buffers, work_mem, etc.). The outline of our experimental
study is as follows: in Sect. 5.1, we discuss the setting of various parameters. In
Sect. 5.2 we present baseline solutions with which we compare our proposals. In
Sect. 5.3 we describe the datasets that we used in this study. In Sect. 5.4, we apply a
qualitative analysis to verify that our proposal operates as expected by using datasets
with ground truth. In Sect. 5.5 we provide a sensitivity analysis with respect to various
parameters. In Sect. 5.6 we continue the qualitative evaluation of our approach in real
datasets with general-purpose clustering validation metrics. In Sect. 5.7, we evaluate
the maintenance of ReTraTree in terms of loading performance and size. In Sect. 5.8,
we measure the I/O performance of ReTraTree with respect to the QuT-Clustering
algorithm, the performance of which is assessed in Sect. 5.9.

5.1 Parameter settings

Regarding parameter settings, as our approachmakes use of the samplingmethodology
of Panagiotakis et al. (2012), we followed the best practices presented in that work.
More specifically, the value of parameter σ was set to 0.1% of the dataset diameter,
while that of εwas set to 10−3.Wewould like to note that wemade several experiments
by modifying the values of these parameters and the differences in the results were
negligible, thus in a way we re-validated our earlier experience in the current setting.

1 Hermes@PostgreSQL MOD engine. URL: http://infolab.cs.unipi.gr/hermes/.
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As far as it concerns the parameters that affect the construction of ReTraTree,
their effect is rather straightforward. Here we report our findings, which have been
experimentally validated. More specifically, the more we increase p, the more chunks
we create and hence the more the partitions (i.e. relations in our implementation). As
thenumber of these partitions increases, the size and the construction timeofReTraTree
decreases as the structure holds the same amount of data, but in smaller relations (i.e.
smaller indexes). Moreover, as by increasing p we have a smaller structure size, the
runtime of QuT-Clustering will be smaller. Regarding the τ parameter, the smaller
it is, the more the number of sub-chunks and hence the more relations; thus, we fall
at the previous case. In addition, the smaller the similarity threshold δ, the more the
sub-trajectories that are assigned to already existing clusters. This implies that fewer
sub-trajectories will end up to the outliers’ set and hence the S2T-Clustering algorithm
runs fewer times. This means that the lower the δ the lower the construction time of
the ReTraTree. Finally, regarding the value of α that is the threshold of the size of
the outliers’ set above which the S2T-Clustering algorithm is applied, the more we
increase α, the fewer times the S2T-Clustering will run and consequently the smaller
the construction time of ReTraTree. In our experiments we fixed threshold α to 5% of
the dataset size.

In the subsequent sections we report on the effect of the important parameter of
the time window W , while in Sect. 5.5 we particularly study the effect on both the
efficiency and the quality ofQuT-Clusteringwhen varying the values of the remaining
parameters, whose effect is not trivial to foresee without experimentation.

5.2 Baseline solution

To the best of our knowledge the ReTraTree structure and the corresponding QuT-
Clustering algorithm is a novel solution to the temporally-constrained sub-trajectory
cluster analysisproblemand there is no comparable technique. Furthermore, as already
mentioned, the S2T-Clustering algorithm has some unique characteristics that make it
appropriate as part of our solution. Themost important characteristic is that it provides
a greedy solution to the problem for the degenerated case where the time windowW is
equal to the entire lifespan of the dataset. This is a key observation thatwe exploit in our
approach by organizing our data in sub-chunks consisting of sub-trajectories having
the same lifespan and applying S2T-Clustering to them. In Sect. 5.3 we demonstrate
that the state-of-the-art TRACLUS algorithm (Lee et al. 2007) that is utilized also
by the TCMM framework (Li et al. 2010b) cannot identify the clusters in datasets
including ground truth. Moreover, in Panagiotakis et al. (2012) it is shown that an
efficient solution for the sampling process that the S2T-Clustering algorithm utilizes,
it requires a 3D-Rtree index.

Given the above, in this empirical study we set the following comparable pairs:
(i) we compare the ReTraTree structure with the 3D-Rtree structure. A secondary
but important reason for this choice is that 3D-Rtree is the prevailing structure that
state-of-the-art spatial DBMS vendors have chosen to support in their products (e.g.
PostGIS, Oracle Spatial); (ii) we compare the S2T-Clustering algorithm with QuT-
Clustering algorithm for the degenerated case where the time window W is equal
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Table 2 Dataset statistics

Statistic SMOD IMIS GeoLife

# Trajectories 400 2181 18,668

# Segments 35,273 12,516,337 24,159,325

Dataset duration 100 s 7 days ∼5 years

Avg. segment length (m) 8 169.5 72

Avg. segment speed (m/s) 7.8 6 5

Avg. sampling rate (s) 1 37 4

Avg. trajectory speed (m/s) 2.9 3.7 3.9

Avg. # points per trajectory 89 5739 1295

Avg. trajectory duration 1.5 min 2.8 days 2.7 h

Avg. trajectory length (km) 0.7 972.4 93

to the entire lifespan of the dataset. Of course, our approach is applicable in any
user-defined time window W . Thus, in this case the comparable pair is on the one
hand the QuT-Clustering and on the other hand again the S2T-Clustering algorithm
after having restricted the dataset to the selected time window W . This implies that
an analyst should first apply a temporal range query to restrict the dataset inside W ,
then build a 3D-Rtree on the restricted dataset and afterwards run the S2T-Clustering
algorithm. This is the best choice to perform a progressive clustering analysis without
the ReTraTree and this is how the analysts work currently.

5.3 Datasets

In this study we used two real datasets (IMIS and GeoLife) and one synthetic (called
SMOD); Table 2 presents their statistics.2

IMIS—IMIS is a real dataset consisting of the trajectories of 2181 ships sailing
in the Eastern Mediterranean for one week; data are collected through the Automatic
Identification System (AIS) throughwhich ships are obliged to broadcast their position
for maritime regulatory purposes.

GeoLife—the GeoLife dataset (Zheng et al. 2010) contains 18,668 trajectories of
178 users in a period of more than four years. This popular dataset represents a wide
range of movements, including not only urban transportation (e.g. from home to work
and back) but also different kinds of activities, such as sports activities, hiking, cycling,
entertainment, sightseeing and shopping.

SMOD—Synthetic MOD (SMOD) consists of 400 trajectories and is used solely
for the ground truth verification. The creation scenario of the synthetic dataset is
the following: the objects move upon a simple graph that consists of the following
destination nodes (points) with coordinates A(0, 0), B(1, 0), C(4, 0), and D(2, 1)
illustrated in Fig. 10.

2 The GeoLife dataset is publicly available. The other two datasets are publicly available at
chorochronos.datastories.org repository under the names ‘imis7days’ and ‘smod’, respectively.
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Fig. 10 The 2-D map of SMOD
with the three one-directional
and one bidirectional road

We assume that half of the objects move with normal speed (i.e. 2 units per second)
and the rest of themmovewith high speed (i.e. 5 units per second). To bemore realistic,
we have also added 50 db Gaussian white noise to the spatial coordinates of SMOD.
The objects move under the following scenario (rules), for a lifetime of 100s: There
exist three one-directional roads (A → B, B → D, D → C) and one bi-directional
road (B � C). At t = 0 sec, all objects start from point A. Thus, the first destination
of all objects is point B. Since half of the objects move with different speed, half of
them (i.e. 200 objects) will arrive to point B at t = 20s and the rest of them at t = 50s.

When an object arrives at a destination point, it ends its trajectory with a probability
of 15%. Otherwise, it continues with the same speed to the next point. If there exist
more than one possible next point, it decides randomly about the next destination.

5.4 Quality of clustering analysis in synthetic datasets including ground truth

To the best of our knowledge there is no real trajectory dataset that provides ground
truth that can be utilized for validating clustering techniques. Thus, our premise is
to evaluate our approach qualitatively by using a synthetic dataset. The description
of SMOD implies that the possible ending times of a moving object are t ≈ 20,
t ≈ 50, t ≈ 80 or t ≈ 100. Based on this fact and by setting the chunk size equal
to the duration of the dataset (i.e. 100 s) we infer that the ReTraTree construction
process should create 4 sub-chunks. We also infer the lifespan l of each sub-chunk.
The invocation of the ReTraTree-Insert that builds these sub-chunks, concludes to
apply the S2T-Clustering algorithm in each of these sub-chunks, which in its turn
results in discovering representatives (i.e. clusters) in each of them. This ground truth
is illustrated in Table 3.

For instance, sub-chunk H1,1 with lifespan [0, 100] (i.e. objects that move through
out the dataset’s lifespan) includes eight representatives, for each of which we note
its lifespan. For example, in H1,1 there are two sub-trajectory clusters on the path
A → B, with lifespans [0, 20], [0, 50], respectively.

We have loaded the SMOD dataset to the ReTraTree. We set the temporal tolerance
parameter to τ = 2 (i.e. we impose 1 s difference in the starting/ending timepoints).
The resultingReTraTreediscovered indeed four sub-chunkswith lifespans: [0, 100], [0,
81], [0, 54] and [0, 20]. By incrementally applying S2T-Clustering in each of them, we
resulted in the discovery of the representatives. Figure 11 illustrates the representatives
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Table 3 The ground truth in
SMOD

Sub-chunk Path Time periods (clusters)

H1,1
l = [0, 100]

A → B [0, 20], [0, 50]

B → C [20, 80], [50, 100]

B → D [20, 52], [50, 100]

C → B [80, 100]

D → C [52, 100]

H1,2
l = [0, 80]

A → B [0, 20], [20, 80]

B → C [20, 80]

H1,3
l = [0, 50]

A → B [0, 20] [0, 50]

B → D [20, 52]

H1,4
l = [0, 20]

A → B [0, 20]

of the four sub-chunks.By combining each row inTable 3with Fig. 10a–d,we conclude
that ReTraTree discovers the correct representatives, with their lifespans only slightly
deviating from ground truth.

We now investigate how theQuT-Clustering algorithmwould operate by setting the
temporal periodW e.g. to the whole lifespan of the dataset. We used the values 5 s, 10
m and 50% for (t, τ), d and γ respectively. After all append and merge operations take
place, the resulting representatives are depicted in Fig. 12, which is almost identical
to the expected ground truth.

Fig. 11 The representatives of the four sub-chunks
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Fig. 12 QuT-Clustering results with W = [0, 100]

In order to measure the stability of our method to noise effects, we have added
more Gaussian white noise with Signal to Noise Ratio (SNR) level SNR = 30 db. The
initial SMOD with additive noise of SNR = 50 db and the new SMOD with SNR =
30 db projected in 2-D spatial and 3-D spatiotemporal space is illustrated in Fig. 13.
A small number of objects (i.e. outliers, four in our experiment) randomly move in
space other than the roads that the other objects reside. These are also depicted in
Fig. 13. In addition, the speed of outliers is updated randomly. Furthermore, for the
sake of simplicity we assume that the chunk size is the whole lifespan of the dataset.
According to this, the ground truth is restricted to the eight different paths that are
valid for sub-chunk H1,1.

Given the above, and in order to demonstrate the benefits of S2T-Clustering we
compare with TRACLUS (Lee et al. 2007), the state-of-the-art sub-trajectory clus-
tering technique. Again we assume that the chunk size is the whole lifespan of the
dataset, hence the ground truth restricts to the eight different paths that are valid for
sub-chunk H1,1. In Fig. 14a, b, we present the results of the S2T-Clustering and TRA-
CLUS, respectively. Specifically, in Fig. 14a we depict the selected sub-trajectories
by S2T-Clustering to serve as the pivots (i.e. representatives) for grouping other sub-
trajectories around them, while in Fig. 14b we depict the synthesized representatives
extracted [with RTG algorithm (Lee et al. 2007)] after the TRACLUS’s grouping
phase. Based on this experiment, it turns out that S2T-Clustering effectively discov-
ers all eight clusters (as well as the noisy sub-trajectories), thus S2T-Clustering is
not affected by the trajectories’ shape, yielding an effective and robust approach for
the discovery of linear and non-linear patterns. On the contrary, TRACLUS fails to
identify the hidden ground truth in this SMOD (i.e. it discovers only four out of the
eight clusters) due to the fact that it ignores the time dimension. Interestingly, note that
TRACLUS discovers more or less linear patterns, ignoring the temporal information
of the trajectories, as mentioned in Lee et al. (2007).
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Fig. 13 The trajectories of the SMOD with additive noise of SNR = 50 db projected in a 2-D spatial space
ignoring time dimension and b spatiotemporal 3-D space. The trajectories of the SMODwith additive noise
of SNR = 30db projected in c 2-D spatial space and d spatiotemporal 3-D space. e The four outliers of the
SMOD with additive noise of SNR = 50db projected in 2-D spatial space ignoring time dimension. f The
four outliers of our synthetic MOD with additive noise of SNR = 30db projected in 2-D spatial space

Fig. 14 The representative trajectories (i.e. clusters) discovered by a S2T-Clustering, b TRACLUS
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Fig. 15 Quality of S2T-Clustering w.r.t. number of clusters

In order to evaluate the accuracy of our proposal in a quantified way, we further
employed F-Measure in SMOD. In detail, we built 8 datasets, with the first consisting
of the sub-trajectories of the first cluster of sub-chunk H1,1 only, the second consisting
of the sub-trajectories of the first and the second cluster only, and so on, until the eighth
dataset, which consisted of the sub-trajectories of all eight clusters. All eight datasets
appeared in two variations: including or not the set of outliers. For each dataset,
we applied S2T-Clustering and calculated F-Measure; Fig. 15 illustrates this quality
criterion by increasing the number of clusters. It is evident that S2T-Clustering turns
out to be very robust, achieving always precision and recall values over 92.3%, while
the outliers are always detected correctly.

5.5 Sensitivity analysis with respect to various parameters

In this section we first study the effect on the quality of the clustering result when
varying the values of the parameters of theQuT-Clustering algorithm. Recall thatQuT-
Clustering does not change the clusters of the trajectories organized in ReTraTree. It
returns modified representatives which are valid inside the given time window W , by
merging or appending the initial representatives. Thus, the goal of the experiment is
to measure the difference between the representatives resulted by the QuT-Clustering
and the initial representatives. Intuitively, having this difference for different values
of various parameters gives us a good hint about the sensitivity of QuT-Clustering
w.r.t. the various parameters. To measure the difference, we employ the SSE metric
between the initial representatives and their counterparts returned by QuT-Clustering.
Obviously, if a representative is returned as-is, it contributes 0 to SSE. Apart from this
set of experiments (one for each parameter), we further measure the execution time
of QuT-Clustering, so as to study the effect of the parameters in the efficiency of the
algorithm, in contradiction with its quality.

The results of these experiments on IMIS dataset are depicted in Fig. 16. More
specifically, as depicted in Fig. 16a as τ increases the quality drops due to the fact that
we have more merges, hence the resulted representatives are more different than the
original. The increasing number of merges results in gradual increase of the execution
time (Fig. 16b). Figure 16c shows that as δ increases the quality increases as fewer
merges take place. Someone would expect that this would decrease execution time,
however this is not the case as the costly operation in themerge phase is the calculation
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Fig. 16 a-c-e-g-i Sum of Square Errors, b-d-f-h-j Execution time, when varying the parameters of QuT-
Clustering

of the similarity between the two representatives, which is something that has already
taken place. What we actually observe is a slight increase in the execution time, which
occurs because QuT-Clustering ends up processing more representatives. Figure 16e,
g, i depict that quality is not affected by the different values of t , d and γ , respectively.
The same conclusion stands also for the execution time illustrated in Fig. 16f, h, j,
respectively. This is because an append (raised when satisfying thresholds on these
parameters) does not change the representatives themselves, i.e. an append simply
returns two representatives as one.

Given the above stable behavior of QuT-Clustering w.r.t. its parameters, in the rest
of the experimental study the values of δ, d, γ , t and τ were set to the following
intermediate values 0.7, 1km, 0.7, 30min and 30min, respectively.

5.6 Quality of clustering analysis in real datasets

In Sect. 5.4we used a dataset including ground truth. In this sectionwe use real datasets
and general-purpose clustering validation metrics. Specifically, we evaluate the qual-
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Fig. 17 V R
DW−R of QuT-Clustering and S2T-Clustering against batches of varying lifespan (setting W to

their whole lifespan): a IMIS, b GeoLife

ity of the clustering through the V R
DW−R measure introduced in Eq. (6). Note that this

measure stands as an alternative to the Sum of Square Errors (SSE) and QMeasure
used in the evaluation of TRACLUS (Lee et al. 2007), as it accumulates the (nor-
malized) distances from the cluster centroids. More specifically, we use the IMIS and
GeoLife real datasets and we compute V R

DW−R for S2T-Clustering andQuT-Clustering
in different subsets of the two datasets. These subsets have been produced by selecting
gradually coarser slices in the time domain. The time window W is set to lifespan of
the subsets. The rationale of the experiment is that the V R

DW−R of QuT-Clustering

should be as close as possible to S2T-Clustering, as the latter is a good solution of the
problem for the degenerated case where the time window is equal to the lifespan of the
dataset. Figure 17 confirms that QuT-Clustering is able to identify clusters as well as
S2T-Clustering does. Put differently, QuT-Clustering results in representatives (after
all the merge and append operations) which are very similar to those resulting from
S2T-Clustering, however as we will show in the subsequent sections, QuT-Clustering
achieves this result with orders of magnitude better performance than S2T-Clustering.

5.7 ReTraTree maintenance

In this section, we evaluate three different aspects of the ReTraTree structure, namely
the efficiency of (i) loading and (ii) appending data, as well as (iii) the size of the
structure. More specifically, the Load operation, measures the required time to load
increasing volumes of data from scratch, which correspond to partitions of the MOD
that are produced by selecting randomly a percentage of the total number of trajecto-
ries. Figure 18 depicts the construction (loading) time to build, on the one hand, the
ReTraTree and, on the other hand, the 3D-Rtree indices, i.e. the two alternatives to solve
the problem at hand. Moreover, in order to correlate the required construction time of
the indices with query time, we also add the execution time of theQuT-Clustering and
the S2T-Clustering algorithms, setting as time window W equal to the whole lifespan
of each dataset. Note the log-scale on y-axis.

From these results, we can make the following observations. First, the increase
in loading time for ReTraTree is sublinear w.r.t. the dataset size, which is a positive
testimony about its scalability. Second, when the total cost is considered (indexing and
querying), it is clear that for large datasets our approach outperforms the competitor
by two orders of magnitude. This is due to the fact that querying the ReTraTree
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S2T-Clustering) against datasets with increasing size: a IMIS, b GeoLife
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Fig. 19 Append of ReTraTree: a IMIS, b GeoLife

is much more efficient than the 3D-Rtree, as the latter quickly becomes expensive,
even for moderate dataset sizes. Put differently, ReTraTree harvests the increased
construction cost in terms of fast query processing, thus boosting the performance of
spatio-temporal clustering.

On the other hand, the Append operation measures the required time to append
an existing ReTraTree with new batches of data, which correspond to new temporal
periods—to perform this experiment we have split the datasets in 7 batches of equal
duration (however, skewed size). Note that the first append operation loads data to an
empty ReTraTree. Figure 19 illustrates the time for each batch of data to be appended
in the two index structures. Moreover, in the same figure we present the size of each
batch. We observe that there is a very high correlation between batch size and batch
execution time, perhaps with the exception of the first batch. This demonstrates that
there exist no additional overheads as more batches are appended, thus the cost of
Append mainly depends on the size of the appended batch. The fact that the first
batch’s execution time is disproportionate to its size has to do with the initialization
cost of the ReTraTree.

Next, we measure the size occupied by the structure. Figure 20 depicts the size
of the ReTraTree structure, both on disk and in memory, and compares it with the
size occupied by the indices required for the S2T-Clustering algorithm. As we have
an in-DBMS implementation, the size of the indices is augmented with the required
B-trees on the primary keys of the database tables.

For clarity, we also present the size of original tables, namely a single table for the
S2T-Clustering case and multiple tables for ReTraTree. As expected, we observe that
the first three levels of ReTraTree have a small in-memory footprint, while, notably,
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Fig. 20 Space requirements: a IMIS, b GeoLife
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Fig. 21 QuT-Clustering versus S2T-Clustering (IMIS only): a blocks read from disk, b hit ratio

our approach has a smaller size on disk in contrast to 3D-Rtree. This is due to that
the ReTraTree’s partitioning scheme leads to more compact 3D-Rtrees (i.e. less dead
space).

5.8 I/O performance

Now, we evaluate the I/O performance of both QuT-Clustering and S2T-Clustering
w.r.t. the number of index blocks read from disk (idx_blk_read) and the ratio of the
index page hits (i.e. blocks read from cache) w.r.t. to all blocks (idx_hit_ratio).

Figure 21a depicts the number of index blocks read from disk while increasing
the duration of the time window W whereas Fig. 16b illustrates the hit ratio that
clearly shows the advantageous use of the index in our case. The results are for IMIS
dataset; we observed similar behaviour in GeoLife. Clearly, QuT-Clustering needs
to access orders of magnitude fewer blocks to perform the clustering task, when
compared to S2T-Clustering. Moreover, this behaviour is consistent also for increased
time windows.

5.9 Efficiency of QuT-clustering versus S2T-Clustering

As a final experiment, we measure the efficiency of performing the clustering task.
The goal is to evaluate the retrieval of all the valid maximal clusters for varying time
windows W , which is critical for progressive clustering analysis. We compare QuT-
Clustering, with an approach that first extracts the relevant records using a temporal
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range query, then creates a 3D-Rtree index on the extracted values, and then applies
S2T-clustering. Figure 22 depicts the execution time of both approaches (using a log
scale on the y-axis) by varying the duration of the time windows W . Again, it is
clear that for large datasets our approach outperforms the competitor by two orders of
magnitude.

Moreover, we created a bundle of queries with random lifespan (i.e. time window
W ) and we executed them with random sequence. Figure 23 depicts the accumulated
execution time, i.e. time depicted for query i +1 also includes time required for query
i . This experiment clearly shows a major benefit of ReTraTree. More specifically,
S2T-Clustering presents an excessive cost in performing multiple clustering tasks
(with different time windows W ), while in the case of ReTraTree this cost simply
disappears. In ReTraTree, the overhead of performing a new clustering is negligible,
as depicted by the almost straight line in the chart. Both results are for IMIS dataset;
we observed similar behaviour in GeoLife (results omitted as they present no added
value).
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6 Related work

In recent years, the field of trajectory pattern mining has many success stories to
narrate. These can be categorized according to the underlying mining methods used
to discover the various behavioral patterns. Recent up-to-date surveys (Pelekis and
Theodoridis 2014; Zheng 2015; Yuan et al. 2017) converge to a categorization of
the various approaches that includes moving clusters, trajectory clustering, sequential
patterns and periodic patterns. In this section, we review the state-of-the-art of the first
two categories of patterns that directly relate to our work, while we also review the
state-of-the-art indexing approaches.

6.1 Moving clusters

An interesting line of research includes works that aim to discover several types of
collective behavior among moving objects, forming a group of objects that moves
together for a certain time period. One of the first approaches in this direction intro-
duced the concept of flocks. A flock (Laube et al. 2005; Benkert et al. 2006) in a time
interval I , where I spans for at least k successive timepoints, consists of at least m
objects, such that for every timepoint in I , there is a disk of radius r that contains all
m entities. If the objects change during the given interval, a kind of varying-flock is
formed. Based on this idea, the notion of amoving clusterwas introduced (Kalnis et al.
2005), which is a sequence of clusters c1, . . ., ck, such that for each timestamp i , ci and
ci+1 share a sufficient number of common objects. An extension of moving clusters
pattern is the convoy pattern (Jeung et al. 2008) that is a group of objects that has at
least m objects, which are density-connected with respect to a distance threshold e,
during k consecutive timepoints. However, trajectories of real-world moving objects
may meet together at some, nevertheless non-consecutive timepoints. To meet this
real-world requirement, a swarm (Li et al. 2010a) is a collection of moving objects
with cardinality at least m, that are part of the same cluster for at least k timepoints.
It is important to note that the k timestamps are not required to be consecutive. The
traveling companion (Tang et al. 2013) pattern is an approach for the online detection
of convoy and swarm patterns from trajectories that arrive as a stream to the system.
The gathering pattern (Zheng et al. 2013, 2014) relaxes the constraints of the above-
mentioned patterns by allowing the membership of a group to evolve gradually. Each
cluster of a gathering should contain at least p participators, which are the objects
appearing in at least c clusters of this gathering. The gathering pattern is used to
detect events, thus, it requires that the region and its shape where the gathering takes
place is more-or-less stable. Another approach that relaxes the globally consecutive
timestamp constraint is the platoon pattern (Li et al. 2015), which only requires that
the timestamps are locally consecutive. In other words, platoon patterns allow gap(s)
in timestamps, but the consecutive time segments must have a minimum length.

Although these approaches provide lucid definitions of the mined patterns, their
main limitation is that they search for special collective behaviors, defined by respec-
tive parameters. None of the above approaches tackles the temporal-constrained
sub-trajectory clustering problem. More concretely, it is out of their scope to organize
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the mined patterns in appropriate ways so as to report these patterns for arbitrary,
user-defined time windows.

6.2 Clustering trajectory data

Most of the aforementioned approaches operate at the point level of the trajectories,
meaning that they ignore the route between sampled points. Moreover, the sampled
points are required to be at the same timestamps for all trajectories. Another line of
research tries to discover groups of either entire or portions of trajectories considering
the routes of the trajectories.

In the first of these categories, Gaffney and Smyth (1999) proposed probabilistic
algorithms for clustering entire trajectories using a regression mixture model. Subse-
quently, unsupervised learning is carried out by using EM algorithm to determine the
clustermemberships in themodel. Except from this probabilistic approach, researchers
have followed two other directions. The first transforms the trajectories to a multi-
dimensional space and then apply well-known clustering algorithms. This is because,
the vast majority of the proposed clustering algorithms, such as k-means (MacQueen
1967), BIRCH (Zhang et al. 1996), CURE (Guha et al. 1998), DBSCAN (Ester et al.
1996), and OPTICS (Ankerst et al. 1999), are tailored to work with point data, thus
applying them to trajectory data is not possible. Unfortunately, it has been shown
(Nanni and Pedreschi 2006) that such an approach based on k-means and hierarchical
clustering algorithms leads to results of very poor quality. The second is to define
appropriate similarity functions and embed them to extensible clustering algorithms.
Following this line, there are several approaches whose goal is to group whole trajec-
tories, including: T-OPTICS (Nanni and Pedreschi 2006) that incorporates a distance
function (Frentzos et al. 2007) into the OPTICS algorithm (Ankerst et al. 1999); the
vector field k-means trajectory clustering technique (Ferreira et al. 2013) whose cen-
tral idea is to use vector fields to induce a notion of similarity between trajectories
letting the vector fields themselves define and represent each cluster; CenTR-I-FCM
(Pelekis et al. 2011) a variant of Fuzzy C-means; and the concept of uncertain group
pattern introduced in Wang et al. (2015). Both of the last two approaches propose
specialized similarity functions having as goal to tackle the inherent uncertainty of
trajectory data. Lately, another entire-trajectory clustering approach tackling uncer-
tainty has been introduced in Hung et al. (2015) where a pattern mining framework has
been proposed for discovering trajectory routes that represent the frequent movement
behaviors of a user. The approach exploits on a similarity measure for trajectories with
silent durations (i.e., the time durations when no data points are available to describe
the movements of users). This is used in a clue-aware clustering algorithm, where
clues are some spatially and temporally close data points that capture certain common
partial movement behaviors of the user. In Xu et al. (2015) a multi-kernel-based esti-
mation process leverages both multiple structural information within a trajectory and
the local motion patterns across multiple trajectories in order to address challenges in
case of large variations within a cluster and ambiguities across clusters.

In the second category of sub-trajectory clustering (Lee et al. 2007) proposed
TRACLUS, a partition-and-group framework for clustering 2D moving objects (i.e.
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TRACLUS ignores the time dimension) that enables the discovery of common sub-
trajectories. TRACLUS clusters trajectories as line segments (sub-trajectories) by
using an appropriate similarity function defined upon these directed line segments
that is embedded in a variant of DBSCAN. The notion of the representative trajectory
of a cluster is also defined. In this approach, the temporal information is not taken into
consideration, while the partitioning is performed per trajectory having as criterion the
line simplification of the trajectory. In Panagiotakis et al. (2012) we have proposed a
voting, a trajectory segmentation and a sampling algorithm that selects the top-k repre-
sentative sub-trajectories of a trajectory database in order to support visual explorative
analysis. In the current work, we make use of the sampling algorithm introduced in
Panagiotakis et al. (2012) as the first step of the S2T-Clustering sub-trajectory clus-
tering algorithm (see line 1, Fig. 4). The second step of S2T-Clustering (see line 2,
Fig. 4) is simply a greedy clustering algorithm that forms groups of sub-trajectories
by assigning each sub-trajectory to its most similar representative sub-trajectory. Even
though this is a simple idea, it results in a sub-trajectory algorithm that fulfils some
unique requirements that the state-of-the-art TRACLUS algorithm cannot meet. This
is clearly shown in our empirical study via a comparison of S2T-Clustering with
TRACLUS. However, this is not the core contribution of this work. We argue that
the repetitive application of the S2T-Clustering, in appropriately chunked portions of
trajectories (according to ReTraTree-Insert algorithm, Fig. 5), properly organized in
ReTraTree, is what we take advantage (in QuT-Clustering algorithm, Fig. 8) in order
to efficiently solve the temporal-constrained sub-trajectory clustering problem.

The “Trajectory Clustering using Micro- and Macro- clustering” (TCMM) frame-
work (Li et al. 2010b) is an incremental method that consists of two parts: (i) online
micro-cluster maintenance and (ii) offline macro-cluster creation. The online part first
simplifies trajectories by partitioning them into 2D line segments to find the spa-
tial clusters of sub-trajectories; then, micro-clusters of the partitioned trajectories are
computed and maintained incrementally. Micro-clusters hold and summarize similar
trajectory partitions at very fine granularity levels. The offline part performs macro-
clustering on the set of micro-clusters rather than on all trajectories when a user
requests so. Our approach presents many crucial differences with respect to TCMM:
(i) TCMM maintains and operates on summaries of trajectories (i.e. micro-clusters)
only, while our approach maintains a lossless representation of the dataset in ReTra-
Tree; (ii) TCMM applies spatial clustering on directed line segments (using Lee et al.
2007), while we operate on the native 3D space applying spatio-temporal clustering;
(iii) the partitioning of the trajectories in TCMM is actually a simplification step taking
place per trajectory, i.e. without global criteria, while in our proposal the partitioning
is a cluster-aware task and it is an implicit outcome of the spatio-temporal clustering
in the 3D space; (iv) most important, TCMM does not solve the temporal-constrained
sub-trajectory cluster analysis problem as the offline macro-clustering part of TCMM
targets at the entire lifespan of the database so as to identify global patterns with-
out temporal constraints, while we are able to extract the clusters at any user given
temporal period by simply querying the appropriately designed ReTraTree structure.
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6.3 Indexing trajectory data

The ubiquity of R-trees in spatial databases has been expanded also in the domain
of mobility data. To name but a few representative approaches, the 3D-Rtree for the
purposes of spatiotemporal indexing was proposed in Theodoridis et al. (1996), while
it was adapted to organize trajectories of moving objects in Pfoser et al. (2000), where
the TB-tree and STR-tree were introduced. The overhead introduced by representing
trajectory segments as MBBs in a R-tree like structure was studied in Hadjieleftheriou
et al. (2006). MV3R-tree (Tao and Papadias 2001) is another efficient proposal for
indexing the past movement of mobility data, consisting of a multi-version R-tree
(extending the idea of multi-version B-tree) and a small auxiliary 3D-Rtree pointing to
the leaf nodes of the former.A recent approach in trajectory indexing includesTrajStore
(Cudre-Mauroux et al. 2010), which is actually a storage scheme consisting of distinct
spatial and temporal indexes. PA-tree (Ni and Ravishankar 2007) is a parametric index
that organizes the coefficients of continuous polynomials approximating movement
functions. All the above state-of-the-art indexing techniques make use of clustering
methods so as to take advantage of their properties in the organization of the data (e.g.
improve the compactness of the MBBs in R-tree-like structures).

From an abstract point of view, ReTraTree is a forest of 3D-Rtrees, however its
design is generic, meaning that instead of using 3D-Rtrees in the leaves of ReTra-
Tree, one could use any of the afore-mentioned specialized indices, most of which
are variants of R-trees. We chose to use 3D-Rtrees as it is natively supported from
most well-known spatial database systems. Most importantly, ReTraTree proposal is
different, as we devise an indexing structure whose main goal is to efficiently support
temporally-constrained sub-trajectory clustering analysis. To the best of our knowl-
edge, this is novel in the domain of mobility data, as similar methods have only been
introduced for legacy data types (Zhang et al. 1996).

7 Conclusions and future work

In this paper, we introduced the temporally-constrained sub-trajectory cluster analysis
problem. To address it, we proposed ReTraTree, an indexing scheme which organizes
trajectories by using an effective spatio-temporal partitioning technique. Partitions
in ReTraTree correspond to groupings of sub-trajectories, which are incrementally
maintained and represented via a hierarchical organization of a small (thus, light-
weight in-memory) set of ‘representative’ sub-trajectories. Given this, the problem
in hand can be efficiently solved as a query operator on ReTraTree, coined QuT-
Clustering. Our approach further contributes to the mobility data management and
mining domain for the additional reason that it has been designed and implemented in
aMODengine. Such functionality enables the application users to performprogressive
cluster analysis via simple SQL in real extensible DBMS. Our extensive experimental
study showed that our approach outperforms the state-of-the-art in-DBMS solution
supported by PostgreSQL by several orders of magnitude.

Nowadays, mobility data is a clear representative of the ‘Big Data’ era. Although
our proposal is orders of magnitude more efficient than state-of-the-art spatial DBMS,
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the execution time of a clustering analysis for a big dataset (even this is feasible) is not
satisfactory. Thus, a limitation of our approach is that it is not directly applicable to
big datasets, as it has not been designed having in mind an appropriate computational
framework, e.g. the map-reduce paradigm. To this end, in the future, we plan to inves-
tigate real-time solutions, exploiting on modern in-memory big data architectures.
Furthermore, our approach classifies sub-trajectories as outliers simply because they
do not satisfy the conditions so as to be clustered around the discovered representatives.
We leave as an interesting future direction of our work, to further study the semantics
of the outliers, so as to be useful in specialized outlier detection applications.
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