
Diversifying Top-k Point-of-InterestQueries
via Collective Social Reach

Stella Maropaki
NTNU

Trondheim, Norway
stella.maropaki@ntnu.no

Sean Chester
University of Victoria

Victoria, Canada
schester@uvic.ca

Christos Doulkeridis
University of Piraeus

Piraeus, Greece
cdoulk@unipi.gr

Kjetil Nørvåg
NTNU

Trondheim, Norway
noervaag@ntnu.no

ABSTRACT
By “checking into” various points-of-interest (POIs), users create
a rich source of location-based social network data that can be
used in expressive spatio-social queries. This paper studies the use
of popularity as a means to diversify results of top-k nearby POI
queries. In contrast to previous work, we evaluate social diversity as
a group-based, rather than individual POI, metric. Algorithmically,
evaluating this set-based notion of diversity is challenging, yet
we present several effective algorithms based on (integer) linear
programming, a greedy framework, and r-tree distance browsing.
Experiments show scalability and interactive response times for up
to 100 million unique check-ins across 25000 POIs.

CCS CONCEPTS
• Information systems → Database query processing; Loca-
tion based services.

KEYWORDS
top-k queries, socio-spatial queries, result diversification, nearest
neighbours, best first search, linear programming

ACM Reference Format:
Stella Maropaki, Sean Chester, Christos Doulkeridis, and Kjetil Nørvåg. 2020.
Diversifying Top-k Point-of-Interest Queries via Collective Social Reach.
In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management (CIKM ’20), October 19–23, 2020, Virtual Event,
Ireland. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3340531.
3412097

1 INTRODUCTION
After the success of apps like Foursquare and Jiepang, many social
networks now allow users to share their current geographic location
with a “check-in.” These location-based social networks (LBSNs) can
incorporate both social and spatial factors into queries to improve
the relevance of results, e.g., by considering how many users have
checked into each nearby point-of-interest (POI) [8, 13].

The canonical approaches are: 1) to set thresholds on popular-
ity and/or proximity; and 2) to rank POIs by a weighted sum of
their popularity and proximity. In either case, treating popularity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3412097

Figure 1: A user at Vavin in Paris searches for “café”.
as independent for each POI can produce very homogeneous re-
sults. For example, of the 50 Parisian coffee shops with the most
Foursquare user check-ins, 41 are Starbucks franchisees.1 Obvi-
ously, diversity is a property of groups, not of individuals. Attempts
had been made on diversification of POIs using the aforementioned
canonical approaches [7, 9, 11] but with no focus on social aspect.

Here, we consider social diversity as the number of unique users
checked into a group of POIs (a set union). We call this collective
social reach and it leverages two insights: a) a larger set of unique
users corresponds to a diverse set of underlying products [6]; and
b) merchants in tourism should target first time check-ins (variety
behavior) [14]. We assume weighted sums, but arbitrary predicates
(particularly distance thresholds) could trivially be supported.

Figure 1 presents an example with a toy check-in set over cafés
near the Vavin metro stop in Paris. The closest POIs are also the
most popular. Techniques without collective reach (e.g., [8, 11, 13])
will return two instances of the same chain. These two Starbucks
attract seven overlapping check-ins, but only four unique customers.
On the other hand, Un Grain Décalé attracts two new customers; a
top-2 ranking that includes reaches of 5–6 unique customers.

However, the diversity comes at a computational cost as the
score of an object is no longer independent of other objects. To
this end, we introduce eight algorithms with unique features. The
most efficient of these, Reheap, is based on a best-first incremental
nearest neighbour algorithm [4]; we prove that it produces identical
results to a conservative algorithm that pessimistically recomputes
the best greedy solution 𝑘 times incrementally (Theorem 4.3).

Contributions and Outline In this work, we:
• Introduce collective social reach to diversify top-𝑘 spatio-
social POI queries (Section 2);
• Describe 8 algorithms to solve the problem (Section 4);
• Empirically compare all 8 algorithms (Section 5).

1https://www.4sqstat.com, “Coffee Shop” category, as of 06 May 2020

https://doi.org/10.1145/3340531.3412097
https://doi.org/10.1145/3340531.3412097
https://doi.org/10.1145/3340531.3412097
https://www.4sqstat.com

2 PRELIMINARIES
Let 𝐺 = (𝑈 , 𝑃, 𝐸) be an unlabelled bipartite graph, where an edge
𝑒𝑖 𝑗 ∈ 𝐸 = (𝑢𝑖 , 𝑝 𝑗) indicates that user 𝑢𝑖 ∈ 𝑈 has “checked in” to
point 𝑝 𝑗 ∈ 𝑃 . Moreover, let 𝛿 (𝑝𝑖 , 𝑝𝑖) denote the distance between
points 𝑝𝑖 , 𝑝 𝑗 ∈ 𝑃 and 𝐷 = max𝑝𝑖 ,𝑝 𝑗 ∈𝑃 𝛿 (𝑝𝑖 , 𝑝 𝑗). We define the
spatial proximity of a query point 𝑞 to point 𝑝𝑖 as 𝜋 (𝑞, 𝑝𝑖) = 1 −
𝛿 (𝑞, 𝑝𝑖)/𝐷 and to a set of points, 𝑃 ′ as 𝜋 (𝑞, 𝑃 ′) = ∑

𝑝∈𝑃 ′ 𝜋 (𝑝, 𝑞).
Moreover, let𝑈 (𝑃 ′) = ⋃

𝑝𝑖 ∈𝑃 ′ {𝑢 𝑗 : (𝑝𝑖 , 𝑢 𝑗) ∈ 𝐸} denote the set
of users who have checked into a point in 𝑃 ′. Wemeasure the diverse
appeal, 𝑠 (𝑃 ′), of a set of points, 𝑃 ′, as the percentage of unique users
that are linked to any point 𝑝 ∈ 𝑃 ′: 𝑠 (𝑃 ′) = |𝑈 (𝑃 ′) |/|𝑈 |.

Given 𝐺 and a user-specified query point 𝑞, our objective is to
determine the 𝑘 points 𝑃 ′ that maximise a normalised, weighted
trade-off of spatial proximity and diverse appeal:

𝑓 (𝐺,𝑞, 𝑘, 𝛼, 𝑃 ′) = 𝛼 · 𝜋 (𝑞, 𝑃 ′)/𝑘 + (1 − 𝛼) · 𝑠 (𝑃 ′) (1)

where the weight 𝛼 is used to express this trade-off.
When 𝛼 = 1, the problem reduces to standard spatial 𝑘-nearest

neighbours; when 𝛼 = 0, to the NP-hard maximum coverage prob-
lem. A set of very popular points does not necessarily maximise
diverse appeal if it attracts overlapping users. Arbitrary selection
predicates can be applied to both𝑈 and 𝑃 ; e.g.,𝑈 could be restricted
to the immediate or 2-hop neighbourhood of the query user, and
𝑃 could be restricted to a certain category of points-of-interest, if
this additional data, e.g., a social network, is available. For example,
this query could be issued for 𝑘 diverse, nearby coffee shops, as
frequented by friends and friends of friends.

3 RELATEDWORK
This paper relates to works in the three broad areas described below.
Location selection The work in [5] quantifies a location’s popu-
larity based on how many users have the location in their 𝑘 nearest
neighbours results. Similarly, location selection based minimisa-
tion of the average distance between a customer and his nearest
facility is studied in [2, 10]. Our work differs from these papers, as
(a) we exploit user check-ins rather than user locations, and (b) we
minimise the sum of distances. Saleem et al. [12] identify sets of
influential locations that have a large geographical impact with a
temporal constraint; they follow a count-based approach, whereas
we adopt a set-based approach. Location recommendations based
on user check-in data using different approaches, including social
relationships, is studied in [15]. Similarly, the maximum covering
location problem [3] identifies locations for facilities in order to
service the maximum amount of the population as possible.
Diversified retrieval Shameem et al. [9] combine coverage and
diversity for item recommendation. Qian et al. [11] retrieve POIs
using the union of associated topics as a measure of diversity to
which a threshold is applied. From a modelling perspective, this
resembles our problem (with topics instead of users); however our
work incorporates diversity into the ranking function. Similarly,
in [7], coverage and diversity are maximised for spatio-temporal
posts by a weighted sum of diversity and coverage using thresholds.
User mobility In GeoLife [16], historical user trajectories are anal-
ysed to define user similarity and POI visits are used as a measure of
popularity, but ignoring social connections. Socio-spatial search is
studied in [8] to retrieve users (instead of locations) with a weighted

maximise :
(1 − 𝛼)
|𝑈 |

∑
𝑢𝑖

𝑦𝑖 +
𝛼

𝑘

∑
𝑝 𝑗

𝜋 (𝑞, 𝑝 𝑗)𝑥 𝑗

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 : 𝑘 ≥
∑
𝑝 𝑗

𝑥 𝑗 ,

𝑦𝑖 ≤
∑

𝑢𝑖 ∈𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑠 (𝑝 𝑗)
𝑥 𝑗 ,

{𝑦𝑖 , 𝑥 𝑗 } ∈ {0, 1}.
Figure 2: Integer Linear Programming Formulation

sum of spatial and social similarity, while a variety of ranking func-
tions is used in [1]. Sohail et al. [13] compute a weighted sum of POI
distance and 1-hop check-in neighbourhood size using both top-𝑘
and skyline variants. None of these works considers POI diversity.

4 PROPOSED ALGORITHMS
1-Pass Baselines (Dist, User, 1P-Score)We define three single-
pass greedy baseline algorithms, mostly to study the characteristics
of the problem. All three algorithms iterate every 𝑝 ∈ 𝑃 and com-
pute a heuristic score. They maintain a heap of the 𝑘 points that
maximise their respective heuristics. The heap contains the pro-
posed solution once all 𝑝 ∈ 𝑃 have been processed.

They are differentiated by their heuristics: Dist calculates just
spatial proximity; User calculates just diverse appeal; and 1P-Score
calculates the full, 𝛼-weighted objective function.
𝑘-Pass Baseline (𝑘P-Score) The 1-pass baselines are clearly lim-
ited as they may select points 𝑝𝑖 with duplicate overlapping users.
Our 𝑘-pass baseline takes the opposite extreme: it behaves like
1P-Score, but only selects the highest scoring point and inserts
it in the intermediate solution 𝑃 ′. Thereafter, it recomputes the
contribution, Δ(𝑝, 𝑃 ′) for every point 𝑝 ∉ 𝑃 ′, explicitly calculating
the |𝑈 (𝑝) ∪𝑈 (𝑃 ′) |, as per this greedy equation:

Δ(𝑝, 𝑃 ′) = 𝑓 (𝐺,𝑞, 𝑘, 𝛼, {𝑝} ∪ 𝑃 ′) − 𝑓 (𝐺,𝑞, 𝑘, 𝛼, 𝑃 ′)
= 𝛼 · 𝜋 (𝑞, 𝑝)/𝑘 + (1 − 𝛼) · 𝑠 (𝑈 (𝑝) \𝑈 (𝑃 ′)) .

(2)

This process is repeated 𝑘 times to progressively produce a so-
lution with 𝑘 points. We can optimise the score calculation with
Eq. 2 by incrementally maintaining an interim solution for each
𝑃 ′, |𝑃 ′ | < 𝑘 , the value 𝜋 (𝑞, 𝑃 ′) and the set𝑈 (𝑃 ′).
Linear Programming (ILP, LP-round) Figure 2 gives an integer
linear programming (ILP) formulation, based on the analogous ILP
formulation for the maximum coverage problem. The unknowns
𝑦𝑖 , 𝑥 𝑗 are binary variables indicating whether the solution covers
user 𝑢𝑖 and POI 𝑝 𝑗 ; i.e., iff 𝑥 𝑗 = 1, then POI 𝑝 𝑗 is in the solution and
iff 𝑦𝑖 = 1 then user 𝑢𝑖 has checked into one of those 𝑘 POIs.

The constraints indicate that ≤ 𝑘 binary POI variables 𝑥 𝑗 can be
set and that a binary user variable 𝑦𝑖 can only be set if at least one
𝑥 𝑗 , corresponding to a POI that user 𝑢𝑖 has checked into, has also
been set; i.e., it produces an induced subgraph with all neighbours
of 𝑘 POIs. ILP is optimal, but the problem is intractable.

LP-round first relaxes the problem to a solvable linear program
by allowing all real-valued solutions 0 ≤ {𝑦𝑖 , 𝑥 𝑗 } ≤ 1. Naturally,
this produces a higher score than the ILP, but does not usually
correspond to a real solution as the solution is non-integral: only
if all values are ∈ {0, 1} can a set of POIs be extracted. To build a
valid solution, we select the 𝑘 largest 𝑥 𝑗 variables. We use ILP to
evaluate the accuracy of other algorithms.

Algorithm 1 RTree and Reheap algorithms

1: function Query(User-R-tree 𝑅, query parameters 𝑞, 𝛼, 𝑘)
2: 𝑃 ′ ← ∅
3: initialise a priority queue 𝑄 ;
4: add all the entries {𝑒𝑖 } of 𝑅’s root to 𝑄 , score = Δ(𝑒𝑖 , ∅)
5: while 𝑄 is not empty and |𝑃 ′ | < 𝑘 do
6: 𝑒 ← 𝑄 .pop()
7: if 𝑒 is internal node then
8: add all children {𝑒𝑖 } of 𝑒 to 𝑄 , score = Δ(𝑒𝑖 , 𝑃 ′)
9: else ⊲ 𝑒 is a POI 𝑝
10: if Δ(𝑝, 𝑃 ′) ≥ 𝑄 .top().score or Not Reheap then
11: add POI 𝑝 to result 𝑃 ′
12: else ⊲ score for 𝑝 is obsolete
13: add 𝑝 to 𝑄 , recomputed score = Δ(𝑝, 𝑃 ′)

return 𝑃 ′

Indexed Algorithms (RTree, Reheap)We also present two meth-
ods that leverage a spatial index. 𝑃 is indexed in an R-Tree and R-
Tree nodes contain a pointer to a list of all users who have checked
into a POI in that subtree. We call this a User-R-Tree.

We use the same incremental maintenance ideas of 𝑘P-Score,
but generalise them for a User-R-tree internal node, 𝑒 . Let 𝜋 (𝑞, 𝑒)
denote the spatial proximity of query point 𝑞 to the nearest point
on/in the MBB at User-R-tree entry 𝑒 , and let 𝑈 (𝑒) denote the
union of all users checked into a point in the subtree rooted at 𝑒 .
We generalise Eq. 2 to a User-R-Tree entry, 𝑒 , as follows:

Δ(𝑒, 𝑃 ′) = 𝛼 · 𝜋 (𝑞, 𝑒)/𝑘 + (1 − 𝛼) · 𝑠 (𝑈 (𝑒) \𝑈 (𝑃 ′)) . (3)

User-R-Tree is used in a best-first incremental nearest neighbour
algorithm, a.k.a., distance browsing [4], (RTree in Algorithm 1).
Query 𝑞 begins at the root node and every child entry 𝑒𝑖 is pushed
onto a priority queue𝑄 based on score Δ(𝑒𝑖 , ∅). Thereafter, we pop
entries off 𝑄 and push their children entries on; if the child entry
corresponds to a point, then, as in [4], we add it to the solution.

However, unlike spatial 𝑘NN, the quality of RTree deteriorates
as solution points are discovered, because the diverse appeal compo-
nent of the scoring function depends on 𝑃 ′: once an MBB is heaped,
its score is never revisited, even though new solution points are dis-
covered. Thus, the score reflects an obsolete state. Reheap addresses
this by reheaping points. Whenever it deheaps a leaf/point 𝑝 , rather
than immediately add it to the solution, it first recomputes Δ(𝑝, 𝑃 ′).
If this would still top 𝑄 , then it is added to the solution; otherwise,
it is reheaped with its recalculated score. The algorithm terminates
once discovering 𝑘 points that do not need to be reheaped.

Lemmata 4.1–4.2 inspire Lines 10–11 of Algorithm 1: no point
enqueued in 𝑄 will merge with 𝑃 ′ to produce a higher score than
will 𝑝; and every point not yet enqueued will produce a score
not better than its parent entry that is currently enqueued. I.e.,
∀𝑝 ′ ∉ 𝑃 ′,Δ(𝑝, 𝑃 ′) ≥ Δ(𝑝 ′, 𝑃 ′). As a result, we get Theorem 4.3.

Lemma 4.1. Given 𝑝, 𝑝 ′ ∉ 𝑃 ′′ and 𝑃 ′ ⊆ 𝑃 ′′, Δ(𝑝, 𝑃 ′′) ≥ Δ(𝑝 ′, 𝑃 ′)
=⇒ 𝑓 (𝐺,𝑞, 𝑘, 𝛼, 𝑃 ′′ ∪ {𝑝}) ≥ 𝑓 (𝐺,𝑞, 𝑘, 𝛼, 𝑃 ′′ ∪ {𝑝 ′}).

Proof. It suffices to show that Δ(𝑝 ′, 𝑃 ′′) ≤ Δ(𝑝 ′, 𝑃 ′). Given the
independence of 𝜋 () on 𝑃 ′, this reduces to: 𝑠 (𝑈 (𝑝) \ 𝑈 (𝑃 ′′)) ≤
𝑠 (𝑈 (𝑝) \𝑈 (𝑃 ′)), which follows trivially from 𝑃 ′ ⊆ 𝑃 ′′. □

Lemma 4.2. Given an R-tree entry 𝑒 and a point 𝑝 ∉ 𝑃 ′ in the
subtree rooted at 𝑒 , Δ(𝑝, 𝑃 ′) ≤ Δ(𝑒, 𝑃 ′).

Proof. Observe that 𝑒 produces a not-lower score than 𝑝 with
respect to both spatial proximity and diverse appeal. Spatially, the
MBB at 𝑒 must contain 𝑝; therefore, the closest point to 𝑞 on the
MBB is at least as close as 𝑝 . For 𝑠 (), observe that 𝑈 (𝑝) ⊆ 𝑈 (𝑒).
The proof then follows as in Lemma 4.1. □

Thus we have Theorem 4.3, which follows from Lemmata 4.1-4.2:

Theorem 4.3. 𝑘P-Score and Reheap produce identical results.

5 EXPERIMENTS
Setup Experiments are run on a server with dual 12-core 2.30GHz
Intel Xeon Gold 5118 CPUs, with 128 GB RAM, using Ubuntu 18.04.
All algorithms are memory-resident and are implemented in C++
using g++ version 7.4.0. (I)LP algorithms use the GNU LP Kit.2

Datasets The Yelp dataset3 has user reviews in 11 cities; we con-
struct a graph of 27K points in Las Vegas (YelpLV) and 665K users
who have rated those POIs, generating 2.2M edges. Including the
other 10 distant cities isn’t particularly meaningful when evaluat-
ing by spatial proximity and would be filtered by a user predicate,
anyway. We also use synthetic data to analyse scalability and per-
formance relative to graph density (|𝐸 |/(|𝑃 | + |𝑈 |)). These datasets
are created by taking |𝑃 | points from YelpLV, creating |𝑈 | users,
and generating |𝐸 | reviews (i.e., edges) between them uniformly at
random. The synthetic dataset S1 (|𝑃 | = 50, |𝑈 | = 200, |𝐸 | = 2𝐾) is
created at the limit for which exact solutions can be found (using
ILP). For the scalability experiments, we use a synthetic dataset S2
(|𝑃 | = 25𝐾, |𝑈 | = 1𝑀, |𝐸 | = 100𝑀) and vary |𝐸 |. To study the impact
of |𝑃 |, we create datasets with constant |𝑈 | = 1𝑀 and a constant
ratio between |𝐸 |/|𝑃 | = 4000; the largest such dataset mirrors the
experiment that vary |𝐸 |.

We report the median of 10 random query points: points taken
from the dataset and distorted by a distance of ≤ 0.01.
Effect of 𝛼 Figure 3 illustrates how 𝛼 affects the query time and
accuracy of each algorithm on real (a) and small synthetic (b) data
(𝑘 = 10). ILP can run on small instances such as these and pro-
duces an exact solution. Accuracy is reported as the score of each
algorithm’s solution, relative to the score produced by ILP.

The naive single-pass baselines (Dist, User, and 1P-Score) have
query time independent of 𝛼 . Dist and User don’t use 𝛼 at all.
1P-Score only uses it as a constant in its heuristic. However, their
respective accuracy illustrates their problem well: 1P-Score corre-
sponds both to the standard (1 − 1

𝑒)-approximation algorithm for
maximum coverage (𝛼 = 0) and the standard best-first algorithm
for 𝑘NN (𝛼 = 1). User and Dist at their respective strengths score
equally with 1P-Score, then gradually degrade toward the right/left.
On YelpLV, Dist achieves ≈ 0% accuracy at 𝛼 = 0 (cut from figure
for readability), illustrating the problem’s dual nature.

RTree is competitive with the single-pass baselines in terms
of query time, but has consistently poor accuracy. As points are
progressively added to the solution, the priority queue becomes less
accurate, as it does not take into account the overlap between the

2https://www.gnu.org/software/glpk/
3https://www.kaggle.com/yelp-dataset/yelp-dataset

https://www.gnu.org/software/glpk/
https://www.kaggle.com/yelp-dataset/yelp-dataset

lp-round ilp 1p-score

dist user kp-score
rtree reheap

0 0.2 0.4 0.6 0.8 1

10−5

10−4

10−3

10−2

10−1

α

Q
u
er
y
ti
m
e
in

se
c
(l
og

)

lp-round ilp 1p-score

dist user kp-score
rtree reheap

0 0.2 0.4 0.6 0.8 1
80

85

90

95

100

α

A
cc
u
ra
cy

%

(a) Synthetic dataset S1

ilp 1p-score dist
user kp-score rtree

reheap

0 0.2 0.4 0.6 0.8 1
10−4

10−2

100

102

104

α

Q
u
er
y
ti
m
e
in

se
c
(l
og

)

ilp 1p-score dist
user kp-score rtree

reheap

0 0.2 0.4 0.6 0.8 1
80

85

90

95

100

α

A
cc
u
ra
cy

%

(b) YelpLV dataset

Figure 3: Running times and accuracy of algorithms as a function of 𝛼

1p-score dist user

kp-score rtree reheap

0M 20M 40M 60M 80M 100M

10−3

10−2

10−1

100

101

|E|

Q
u
er
y
ti
m
e
in

se
c
(l
o
g)

1p-score dist user

kp-score rtree reheap

5K 10K 15K 20K 25K

10−3

10−2

10−1

100

101

|P |

Q
u
er
y
ti
m
e
in

se
c
(l
og

)

Figure 4: Scalability of algorithms on synthetic datasets rel-
ative to the number of check-ins or POIs (𝛼 = 0.5)

enqueued points and those newly added to the solution. Its solution
quality continually degrades as 𝑘 grows (not shown).
𝑘P-Score and Reheap produce equivalent solutions, but by dif-

ferent means. The former recomputes the score estimate for every
point after every progressive addition to the solution; the latter
only recomputes for those points that top the priority queue. Thus,
Reheap achieves much better performance, as it does substantially
fewer recomputations. In fact, its query time is very close to that
of RTree, as few points actually need to be reheaped (not shown).
Scalability Figure 4 shows scalability as data grows in terms of
the edge set (left, increasing density) or point set (right, constant
density). We set 𝛼 = 0.5, a consistent inflection point for RTree
in Figure 3. ILP and LP-round are omitted (too slow to generate
constraint matrices of this size); so, accuracy is not reported.

The one-pass baselines are largely unaffected by |𝐸 | (left) but
degrade with an increase in |𝑃 |, as they calculate scores for each
𝑝 ∈ 𝑃 . In contrast, the indexed (RTree, Reheap) and 𝑘P-Score
algorithms are affected by the density of the bipartite network; their
performance degrades with increasing |𝐸 |. We conjecture that this
arises from more expensive calculations of 𝑠 (𝑃 ′), which involves
set operations on increasingly longer lists of users. Increasing |𝑃 |
with a fixed check-in ratio degrades the performance of all three
algorithms, though the indexed solutions absorb the increase better
because they only need to process a larger tree, not every point.
Memory usage and indexing cost (not shown)All approximate
algorithms reach a memory high water mark that is nearly linear in
|𝐸 |. At |𝐸 | = 100M, the non-index-based algorithms require ≈ 3 GB
of memory, while the index-based algorithms require ≈ 5.3 GB.
Indexing time (for RTree and Reheap) is also close to linear in |𝐸 |
and requires ≈ 11.5 seconds at |𝐸 | = 100M.

6 CONCLUSION
We introduced a novel notion of diversity—the uniqueness in the
set of users—and a POI 𝑘NN problem that linearly combines spatial
promixity and our diversity measure. This yields an interesting
theoretical problem of solving a linear combination of a near-linear
and an NP-hard problem.We propose 8 intuitive algorithms to solve
this, one of which (Reheap) achieves sub-decisecond performance
on a real dataset with > 2million user reviews, while also achieving
accuracy very close to the exact ILP solution that does not scale.

ACKNOWLEDGMENT
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement CoupledDB No 753810 (S.
Chester); the Hellenic Foundation for Research and Innovation
and the General Secretariat for Research and Technology, under
grant agreement No 1667 (C. Doulkeridis); and the Norwegian Re-
search Council grant ExiBiDa (S. Maropaki and K. Nørvåg). We
thank Orestis Telelis for his help with the GNU LP Kit.

REFERENCES
[1] Nikos Armenatzoglou, Ritesh Ahuja, and Dimitris Papadias. 2015. Geo-Social

Ranking: functions and query processing. VLDB J 24, 6 (2015), 783–799.
[2] Yu-Chi Chung, I-Fang Su, and Chiang Lee. 2018. k-most suitable locations

selection. GeoInformatica (2018), 1–32.
[3] Richard Church and Charles ReVelle. 1974. The Maximal Covering Location

Problem. Papers of the Regional Science Association 32 (1974), 101–118.
[4] Gísli R Hjaltason and Hanan Samet. 1998. Incremental distance join algorithms

for spatial databases. In ACM SIGMOD. 237–248.
[5] Jin Huang et al. 2011. Top-k Most Influential Locations Selection. In CIKM.
[6] Rong-Hua Li and Jeffery Xu Yu. 2013. Scalable Diversified Ranking on Large

Graphs. TKDE 25, 9 (2013), 2133–2146.
[7] Paras Mehta et al. 2016. Coverage and Diversity Aware Top-k Query for Spatio-

Temporal Posts. In SIGSPATIAL. 37:1–37:10.
[8] Kyriakos Mouratidis et al. 2015. Joint Search by Social and Spatial Proximity.

TKDE 27, 3 (2015), 781–793.
[9] Shameem A. Puthiya Parambath et al. 2016. A Coverage-Based Approach to

Recommendation Diversity On Similarity Graph. In RecSys. 15–22.
[10] J Qi et al. 2012. The min-dist location selection query. In ICDE. 366–377.
[11] Zhihu Qian et al. 2018. Diversified Spatial Keyword Query on Topic Coverage.

In Workshop on Mobile Web Data Analytics. 24–34.
[12] Muhammad Aamir Saleem et al. 2017. Location influence in location-based social

networks. InWSDM. 621–630.
[13] Ammar Sohail et al. 2018. Social-Aware Spatial Top-k and SkylineQueries. Comput.

J. 61, 11 (2018), 1620–1638.
[14] Iis P Tussyadiah. 2012. A Concept of Location-Based Social Network Marketing.

Journal of Travel & Tourism Marketing 29, 3 (2012), 205–220.
[15] Hao Wang et al. 2013. Location Recommendation in Location-based Social

Networks using User Check-in Data. In SIGSPATIAL/GIS. 364–373.
[16] Yu Zheng et al. 2010. GeoLife: A Collaborative Social Networking Service among

User, Location and Trajectory. IEEE Data Eng Bull 33, 2 (2010), 32–39.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Proposed Algorithms
	5 Experiments
	6 Conclusion
	References

