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Abstract—Hot spot analysis is the problem of identifying
statistically significant spatial clusters from an underlying data
set. In this paper, we study the problem of hot spot analysis for
massive trajectory data of moving objects, which has many real-
life applications in different domains, especially in the analysis
of vast repositories of historical traces of spatio-temporal data
(cars, vessels, aircrafts). In order to identify hot spots, we
propose an approach that relies on the Getis-Ord statistic, which
has been used successfully in the past for point data. Since
trajectory data is more than just a collection of individual
points, we formulate the problem of trajectory hot spot analysis,
using the Getis-Ord statistic. We propose a parallel and scalable
algorithm for this problem, called THS, which provides an exact
solution and can operate on vast-sized data sets. Moreover,
we introduce an approximate algorithm (aTHS) that avoids
exhaustive computation and trades-off accuracy for efficiency
in a controlled manner. In essence, we provide a method that
quantifies the maximum induced error in the approximation, in
relation with the achieved computational savings. We develop
our algorithms in Apache Spark and demonstrate the scalability
and efficiency of our approach using a large, historical, real-life
trajectory data set of vessels sailing in the Eastern Mediterranean
for a period of three years.

Index Terms—Hot spot analysis, trajectory data, parallel
processing, MapReduce, Apache Spark

I. INTRODUCTION

Huge amounts of mobility data is being produced at un-
precedented rates everyday, due to the proliferation of GPS
technology, the widespread adoption of smartphones, social
networking, as well as the ubiquitous nature of monitoring
systems. This data wealth contributes to the ever-increasing
size of what is recently known as big spatial (or spatio-
temporal) data [1], a specialized category of big data focusing
on mobile objects, where the spatial and temporal dimensions
have elevated importance. Such data include mobile objects’
trajectories, geotagged tweets by mobile Twitter users, check-
ins in Foursquare, etc. Analyzing spatio-temporal data has the
potential to discover hidden patterns or result in non-trivial
insights, especially when its immense volume is considered. To
this end, specialized parallel data processing frameworks [2]–
[5] and algorithms [6]–[9] have been recently developed
aiming at spatial and spatio-temporal data management at
scale.

In this context, a useful data analysis task is hot spot
analysis, which is the process of identifying statistically
significant clusters (i.e., clusters which have low probability
values, based on a specific trajectory attribute). Motivated by

the need for big data analytics over trajectories of vessels,
we focus on discovering hot spots in the maritime domain,
as this relates to various challenging use-case scenarios [10].
More specifically, having a predefined tessellation of a region
into areas of interest for which there is a priori knowledge
about occurring activities in them, it is very useful to be
able to analyze – for instance – the intensity of the fishing
activity (i.e., fishing pressure) of the areas, or to quantify the
environmental fingerprint by the passage of a particular type
of vessels from the areas. Similar cases exist in all mobility
domains. In the aviation domain, the predicted presence of
a number of aircrafts above a certain threshold results in
regulations in air traffic, while in the urban domain such a
presence accompanied with low speed patterns implies traffic
congestions. Thus, the effective discovery of such diverse
types of hot spots is of critical importance for our ability to
comprehend the various domains of mobility.

Our approach for hot spot discovery and analysis is based
on spatio-temporal partitioning of the 3D data space in cells.
Accordingly, we try to identify cells that constitute hot spots,
i.e., not only do they have high density, but also that the density
values are statistically significant. We employ the Getis-Ord
statistic [11], a popular metric for hot spot analysis, which
produces z-scores and p-values by aggregating the density
values of neighboring cells. A cell is considered as a hot spot,
if it is associated with high z-score and low p-value.

Unfortunately, the Getis-Ord statistic is typically applicable
in the case of 2D spatial data, and even though it can be
extended to the 3D case, it has been designed for point
data. In contrast, our application scenario concerns trajectories
of moving objects, temporally sorted sequences of spatio-
temporal positions, and the applicability of hot spot analysis
based on a metric, such as the Getis-Ord statistic (but also any
other metric), is far from straightforward.

To this end, we formulate the problem of Trajectory hot spot
analysis, where our main intuition is that the contribution of
a moving object to a cell’s density is proportional to the time
spent by the moving object in the cell. In particular, we adapt
the Getis-Ord statistic in order to capture this intuition for
the case of trajectory data. Then, we propose a parallel and
scalable processing algorithm for computing hot spots in terms
of spatio-temporal cells produced by grid-based partitioning of
the data space under study. Our algorithm achieves scalability
by parallel processing of z-scores for the different cells, and



returns the exact result set. Moreover, we couple our exact
algorithm with a simple approximate algorithm that only
considers neighboring cells at distance h (in number of cells),
instead of all cells, thus achieving significant performance
improvements. More importantly, we show how to quantify the
error in z-score computation, thereby developing a method that
can trade-off accuracy for performance in a controlled manner.

In summary, our work makes the following contributions:
• We formulate the problem of trajectory hot spot analysis,

by means of the popular Getis-Ord statistic, appropriately
tailored to become meaningful for sequences of spatio-
temporal positions, rather than plain points.

• We present a parallel algorithm that provides an exact
solution to the problem, and returns spatio-temporal cells
with high scores that essentially constitute hot spots.

• To improve the efficiency, we also propose an approxi-
mate parallel algorithm and a method that is able to trade-
off result accuracy for computational cost, that bounds the
error of the approximation in a controlled way.

• We developed our algorithms in Apache Spark and we
demonstrate their efficiency and scalability by experimen-
tal evaluation on a large data set of vessel trajectories in
the Eastern Mediterranean Sea that span three years in
total.

The remainder of this paper is structured as follows: Sec-
tion II formulates the problem under study. Section III presents
the proposed algorithm for hot spot analysis for big trajectory
data along with its implementation details. In Section IV, we
present the approximate algorithm that solves the problem with
much lower processing cost, and with controlled error in the
accuracy. Then, in Section V, we present the experimental
results using real-life data set, and in Section VI we provide an
overview of research related to hot spot analysis and trajectory
data management. Finally, Section VII concludes the paper.

II. PROBLEM FORMULATION

Consider a moving object database D that consists of
trajectories τ ∈ D of moving objects. A trajectory, denoted by
an identifier τ , is a sequence of data points p described by 2D
spatial coordinates (p.x and p.y), a timestamp (p.t), as well as
any other information related to the spatio-temporal position
of p. For example, attributes referring to weather information.
We also use p.τ to refer to the trajectory that p belongs to.
Furthermore, consider a spatio-temporal partitioning P which
partitions the 3D spatio-temporal domain into n 3D cells
{c1, . . . , cn} ∈ P . Each data point p is mapped to one cell ci,
which is determined based on p being enclosed in ci. Also,
we use cistart , ciend

to refer to temporal start and end of a
cell ci.

We also define the attribute value xi of the cell ci as:
xi =

∑
τ∈ci

tend−tstart

ciend
−cistart

, thus each trajectory τ that exists
in a spatio-temporal cell ci contributes to the cell’s attribute
value by its temporal duration tend−tstart in ci normalized by
dividing with the cell’s temporal lifespan ciend

− cistart
. This

definition implies that the longer a moving object’s trajectory

Symbol Description
D Spatio-temporal data set
p ∈ D Spatio-temporal data point (p.x, p.y, p.t)
τ A trajectory (as a sequence) of points p1, p2, . . .
P 3D space partitioning P = {c1, . . . , cn}
ci The i-th cell of partitioning P , (1 ≤ i ≤ n)
xi Attribute value of cell ci ∈ P
wi,j A weight indicating the influence of cell cj to ci
α Parameter used to define the weights wi,j

n The number of cells in P
G∗

i The Getis-Ord statistic for cell ci
Ĝ∗

i An approximate value of G∗
i

Hij Distance between cells ci and cj (in number of cells)
top-k Requested number of most significant cells

TABLE I
OVERVIEW OF SYMBOLS.

stays in a spatio-temporal cell, the higher its contribution to
the cell’s hot spot value.

The problem of hot spot analysis addressed in this work is
to identify statistically significant spatio-temporal areas (i.e.,
cells of P), where the significance of a cell ci is a function
of the cell’s attribute value xi, but also of other neighboring
cells’ attribute values. A commonly used function (statistic) is
the Getis-Ord statistic G∗i , defined as [11]:

G∗i =

∑n
j=1 wi,jxj −X

∑n
j=1 wi,j

S

√
[n

∑n
j=1 w

2
i,j−(

∑n
j=1 wi,j)2]

n−1

(1)

where xj is the attribute value for cell j, wi,j is the spatial
weight between cell i and j, n is equal to the total number of
cells, and:

X =

∑n
j=1 xj

n
(2)

S =

√∑n
j=1 x

2
j

n
− (X)2 (3)

To model the intuition that the influence of a neighboring
cell ci to a given cell cj should be decreasing with increased
distance, we employ a weight function that decreases with
increasing distance. Namely, we define: wij = a1−ρ, where
a > 1 is an application-dependent parameter, and ρ represents
the distance between cell i and cell j measured in number of
cells1. For immediate neighboring cells, where ρ = 1, we have
wij = 1, while for the next neighbors we have respectively:
1/a, 1/a2, . . . ,. This definition captures an “exponential
decay” with distance in the contribution of neighboring cells
to a given cell.

Based on this, the problem of trajectory hot spot analysis is
to identify the k most statistically significant cells according to
the Getis-Ord statistic, and can be formally stated as follows.

Problem 1: (Trajectory hot spot analysis) Given a trajectory
data set D and a space partitioning P , find the top-k cells
TOPK = {c1, . . . , ck} ∈ P based on the Getis-Ord statistic
G∗i , such that: G∗i ≥ G∗j , ∀ci ∈ TOPK, cj ∈ P − TOPK.

1Notice that this distance applies to the 3D grid, i.e., cells with the
same spatial extent that belong to different temporal intervals have non-zero
distance.
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Fig. 1. Overview of THS algorithm.

In this paper, we study an instance of Problem 1, where
the aim is to perform hot spot analysis for trajectories over
massive spatio-temporal data by proposing a parallel and
scalable solution. Thus, we turn our attention to large-scale
trajectory data sets that exceed the storage and processing
capabilities of a single centralized node. We assume that the
data set D is stored distributed in multiple nodes, without
any more specific assumptions about the exact partitioning
mechanism. Put differently, a node stores a subset Di of the
records of D, and it holds that Di

⋂
Dj = ∅ (for i 6= j),

and
⋃
Di = D. Hence, in this paper, we study a distributed

version of Problem 1. Table I provides an overview of the
notation used in this paper.

III. EXACT THS ALGORITHM

In this section, we present the THS (Trajectory Hot Spot)
algorithm for distributed hot spot analysis over big trajectory
data. The proposed algorithm is designed to be efficiently
executed over a set of nodes in parallel and is implemented in
Apache Spark. The input data set D is assumed to be stored
in a distributed file system, in particular HDFS.

A. Overview

Intuitively, our solution consists of three main steps, which
are depicted in Figure 1. In the first step, the goal is to compute
all the cells’ attribute values of a user defined spatio-temporal
equi-width grid. To this end, the individual attribute values of
trajectory data points are aggregated into cell attribute values,
using the formula introduced in Section II. Then, during the
second step, we calculate the cells’ attribute mean value and
standard deviation which will be provided to the Getis-Ord
formula later. Furthermore, we compute the weighted sum of
the values for each cell ci:

∑n
j=1 wi,jxj , by exchanging the

cells’ attribute values between themselves. Upon successful
completion of the second step, we have calculated all the
individual variables included in the Getis-Ord formula, and
we are now ready to commence the final step. The goal of the
third step is to calculate the z-scores of the spatio-temporal

grid cells, by applying the Getis-Ord formula. The trajectory
hot spots can then be trivially calculated, by either selecting
the top-k cells with the higher z-score values, or by selecting
the cells having a p-value below a specified threshold.

The above description explains the rationale of our ap-
proach. In the following, we describe the implementation of
our solution using Apache Spark Core API, along with the
necessary technical details.

Algorithm 1 THS Step 1: Build Attribute Grid
1: Input: D, P
2: Output: gridRDD: RDD[i, xi]
3: function
4: gridRDD = D.mapToPair(p =>
5: emit new pair(getCellId(p) ⊕ p.τ , p.v)
6: ).reduceByKey(t1, t2 =>
7: emit new pair(MIN(t1, t2), MAX(t1, t2))
8: ).mapToPair(cell trajectory id, (tstart , tend) =>
9: emit new pair(cell id, tend−tstart

ciend
−cistart

)
10: ).reduceByKey(v1, v2 => emit v1 + v2)
11: end function

B. Building the Attribute Grid

The first step of THS, depicted in Algorithm 1, takes as
input a data set D of trajectories stored in HDFS and a spatio-
temporal partitioning P , which defines the size of all cells
ci regarding their spatial and temporal dimensions. We use a
function getCellId(p) to get the identifier i of cell ci enclosing
data point p. Initially, the trajectory data points are mapped
to key value pairs (line 5), where the key is composed by
a string concatenation (denoted with ⊕ in the algorithm) of
the data point’s cell id and its trajectory id (p.τ ), while the
value is the timestamp of p. This assignment of composite
keys, enables us to group data points by cell id and trajectory
id; we calculate the minimum and maximum attribute values
(tstart, tend respectively) for each such group (line 7). Then,
we compute the fraction tend−tstart

ciend
−cistart

, individually for each
group defined by the composite keys, and keep only the cell
id part of the key (line 9). We perform a regrouping based
on the new keys, to calculate the sum of the fractions for
each cell (line 10). Hence, we have now successfully built the
attribute grid (gridRDD), by computing each cell’s attribute
value xi =

∑
t∈ci

tend−tstart

ciend
−cistart

.

C. Exchanging Cell Information

In its second step, as presented in Algorithm 2, THS takes
as input the attribute grid produced by the first step and the
spatio-temporal partitioning P . In line 4, we distributively
calculate the sum and squared sum of the cells’ attribute
values. Having computed these sums, we can trivially calculate
the mean value X and standard deviation S, in a centralized
fashion (line 5).

Then, our goal is to broadcast each cell’s weighted attribute
value to all the other cells of the grid. To this end, in lines 7-
10, we first get the list of weights between current cell ci and



Algorithm 2 THS Step 2: Exchange Cell Information
1: Input: gridRDD: RDD[i, xi], P
2: Output: X , S, wSumRDD: RDD[i,

∑n
j=1 wi,jxj]

3: function
4: gridRDD.forEach(xi => update accumulators)
5: calculate X and S from accumulators
6: wSumRDD = gridRDD.flatMapToPair(i, xi =>
7: wi = getWeightList(i)
8: for each j in wi do
9: emit new pair(j, xi ∗ wi,j)

10: end for
11: ).reduceByKey(wx1, wx2 => emit wx1 + wx2)
12: end function

all the cells cj of the grid (line 7). For each cell cj we emit
a new key value pair consisting of the j value as the key and
the weighted attribute as its value (line 9). Then, we perform
a grouping of these key value pairs, based on their keys (i.e.,
cell ids), while calculating the sum of their weighted attribute
values (line 11). The result of this operation is the weighted
sum grid (wSumRDD), which will be used for computing the
Getis-Ord formula.

Algorithm 3 THS Step 3: Calculate Getis-Ord

1: Input: X , S, wSumRDD: RDD[i,
∑n
j=1 wi,jxj], P

2: Output: GiRDD: RDD[i, G∗i ]
3: function
4: GiRDD = wSumRDD.mapToPair(i, wxi =>
5: sumi = getWeightSum(i)
6: squaredSumi = getWeightSquaredSum(i)
7: emit new pair(i, wxi−X·sumi

S

√
[n·squaredSumi−(sumi)

2]

n−1

)

8: )
9: end function

D. Calculating z-scores with Getis-Ord statistic

The third step of THS is depicted in Algorithm 3. It takes
as input the X and S values computed in the previous part,
along with the weighted sum grid and the spatio-temporal
partitioning P . We map each cell’s weighted sum attribute
value to a z-score by applying the Getis-Ord formula. The sum
and squared sum of weights are initially computed (lines 5,6)
in order to be provided to the calculation of the Getis-Ord
formula right after (line 7). Finally, the result of this operation,
results to a data set (GiRDD) consisting of cell ids and their
Getis-Ord z-scores.

IV. AN APPROXIMATE ALGORITHM: ATHS

The afore-described algorithm (THS) is exact and computes
the correct hot spots over widely distributed data. However,
its computational cost is relatively high and can be intolerable
when the number of cells n in P is large. This is because
every cell’s value must be sent to all other cells of the grid,
thus leading to data exchange through the network of O(n2)

cj

Cells at 1 hop 
from cj

Cells at 2 hops 
from cj

Fig. 2. Example of cells at distance from a reference cell cj (the dark color
indicates the weight of their contribution to cj ’s value xj ).

as well as analogous computational cost, which is prohibitive
for large values of n.

Instead, in this section, we propose an approximate algo-
rithm, denoted aTHS, for solving the problem. The rationale
behind aTHS algorithm is to compute an approximation Ĝ∗i
of the value G∗i of a cell ci, by taking into account only those
cells at maximum distance h from ci. The distance is measured
in number of cells. Intuitively, cells that are located far away
from ci will only have a small effect on the value G∗i , and
should not affect its accuracy significantly when neglected.

More interestingly, we show how to quantify the error
∆G∗i = G∗i − Ĝ∗i of the computed hot spot z-score of any
cell ci, when taking into account only neighboring cells at
distance h. In turn, this yields an analytical method that can
be used to trade-off accuracy with computational efficiency,
having bounding error values.

A. The aTHS Algorithm

Based on the problem definition, cells located far away from
a reference cell ci, only have a limited contribution to the
Getis-Ord value G∗i of ci. Our approximate algorithm (aTHS)
exploits this concept, and can be parameterized with a value h,
which defines the subset of neighboring cells that contribute
to the value of ci. We express h in terms of cells, for instance
setting h=2 corresponds to the case depicted in Figure 2, where
only the colored cells will be taken into account by aTHS for
the computation of Ĝ∗i (an approximation of the value of G∗i ).
In practice, the relationship between cell cj and white cells
can be expressed by setting their weight factor equal to zero.

In algorithmic terms, aTHS is differentiated from THS in the
second and third step. Algorithm 4 describes the pseudo-code
of the second step of aTHS. The main difference is in line 9,
where we check the distance between cells i and j; if the
distance is greater than the threshold h, then the emission of
a new key value pair does not occur (i.e., we do not broadcast
the weighted attribute value of cell ci to cell cj).

The third step of aTHS calculates the weight attribute sum
and squared sum, by applying a weight factor equal to zero,
for cells cj which are located in a distance farther than h
from ci. This change affects only the implementation of the



Algorithm 4 aTHS Part 2: Exchange Cell Information
1: Input: gridRDD: RDD[i, xi], P , h
2: Output: X , S, wSumRDD: RDD[i,

∑n
j=1 wi,jxj]

3: function
4: gridRDD.forEach(xi => update accumulators)
5: calculate X and S from accumulators
6: wSumRDD = gridRDD.flatMapToPair(i, xi =>
7: wi = getWeightList(i)
8: for each j in wi do
9: if DISTANCE(i, j) ≤ h then

10: emit new pair(j, xi ∗ wi,j)
11: end if
12: end for
13: ).reduceByKey(wx1, wx2 => emit wx1 + wx2)
14: end function

getWeightSum and getWeightSquaredSum methods, used in
lines 5,6 of Algorithm 3.

B. Controlling the Error ∆G∗i

In this section, we provide an upper bound for the value
∆G∗i . We use Hij to denote the distance measured in number
of cells between cells ci and cj . For example, in Figure 2,
the darker colored cells are 1 hop away, while the lighter grey
colored cells are 2 hops away from the reference cell cj . Thus,
we have:

∆G∗i = G∗i − Ĝ∗i =

n∑
j=1

wi,jxj −X
n∑
j=1

wi,j

S

√
[n

n∑
j=1

w2
i,j−(

n∑
j=1

wi,j)2]

n−1

−

∑
Hij≤h

wi,jxj −X
∑
Hij≤h

wi,j

S

√
[n

∑
Hij≤h

w2
i,j−(

∑
Hij≤h

wi,j)2]

n−1

Since the expression n
∑n
j=1 w

2
i,j−(

∑n
j=1 wi,j)

2 is positive
monotone with increasing n values, we can write the following
inequality by replacing the denominator of the first fraction
with the second:

∆G∗i ≤

n∑
j=1

wi,jxj −X
n∑
j=1

wi,j − (
∑
Hij≤h

wi,jxj −X
∑
Hij≤h

wi,j)

S

√
[n

∑
Hij≤h

w2
i,j−(

∑
Hij≤h

wi,j)2]

n−1

To simplify notation, let us refer to the denominator of the

above expression as: γ = S

√
[n

∑
Hij≤h

w2
i,j−(

∑
Hij≤h

wi,j)2]

n−1 , then
the error ∆G∗i :

∆G∗i ≤

1

γ
[

n∑
j=1

wi,jxj−X
n∑
j=1

wi,j−(
∑
Hij≤h

wi,jxj−X
∑
Hij≤h

wi,j)] =

1

γ
(
∑
Hij>h

wi,jxj −X
∑
Hij>h

wi,j)

Further, let xmax denote the maximum value of xi for any
cell ci in the grid. Then, we can replace xj with xmax and
we have:

∆G∗i ≤
xmax −X

γ

∑
Hij>h

wi,j

It is trivial to derive a formula that, for a given cell, returns
the number of cells at distance ρ. Function: f(ρ, d) returns
the total number of cells (including the given cell) within ρ
hops from the given cell: f(ρ, d) = (2ρ+ 1)d, where d is the
dimensionality. For example, for ρ=1 and d=3, f(1, 3) = 33 =
27, as expected. Then, the formula2 returning the number of
cells at exactly ρ hops away from a given cell is: f(ρ, d) −
f(ρ− 1, d).

Also, recall that by definition wij = a1−ρ for cells ci and
cj which are located at ρ hops away, then:∑

Hij>h

wi,j =
∑
ρ>h

a1−ρ[f(ρ, d)− f(ρ− 1, d)]

Putting everything together:

∆G∗i ≤
xmax −X

γ

∑
ρ>h

a1−ρ[f(ρ, d)− f(ρ− 1, d)]

In summary, we can compute an upper bound for the error
∆G∗i introduced to the Getis-Ord value of a cell ci, due
to approximate processing using only neighbors at distance
h. In turn, this allows us to explicitly set the value h in
Algorithm aTHS, in such a way that we can guarantee that the
maximum error introduced is quantified. In practice, an analyst
can exploit our method to trade-off accuracy for computational
efficiency, making aTHS an attractive algorithm for trajectory
hot spot analysis over massive data sets.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our approach
for trajectory hot spot analysis. We implemented all algorithms
in Java, using Apache Spark 2.2.0 Core API. Our Java
code can be found at: https://github.com/nikpanos/trajectory
hotspot analysis/tree/IEEE BigData18.

2We acknowledge that function f(ρ, d) provides an overestimation of the
number of cells, when the cell under study is situated at distance smaller than
ρ from the grid boundaries, so we use this expression as an upper bound.



A. Experimental Setup
Platform. We deployed our code on a Hadoop YARN

2.7 cluster consisting of 10 computing nodes. In all our
experiments, we use the YARN cluster deploy mode. We
initiate 9 spark executors, configured to use 5.5GB of main
memory and 2 executor cores each. We also configured HDFS
with 128MB block size and a replication factor of 2.

Data sets. We employed a real data set containing surveil-
lance information from the maritime domain. The data was
collected over a period of three years, consisting of 83,735,633
individual trajectories for vessels moving in the Eastern
Mediterranean Sea. This data set is 89.4GB in total size
and contains approximately 1.9 billion records. Each record
represents a point in the trajectory of a vessel and is made
up by 〈trajectoryID; timestamp; latitude; longitude〉. The
data set is stored in 720 HDFS blocks, in uncompressed text
format.

Selecting hot spots. In order to identify hot spots on
trajectory data, we opt to select them by reporting in the final
result set only the top-k grid cells having the highest Getis-
Ord z-scores. To this end, after the execution of the third step
of our solution, we perform a distributed sorting of all the
cells in GiRDD data set by descending order of their z-scores,
and then, we pick the first k cells. Hence, our experimental
study includes a fourth step, which concerns the discovery of
top-k cells. The implementation of this fourth step is straight-
forward, as the Spark Core API provides all the necessary
methods for sorting an RDD, and then collecting the first k
values from it.

Metrics. Our main evaluation metric was the execution time
needed for each individual step of our algorithm to complete
in our experiments on the Spark cluster. In the following, the
actual execution times will be presented, omitting any over-
head caused by Spark and YARN initialization procedures. All
execution times are depicted using the number of milliseconds
elapsed for processing each step.

Furthermore, in each experiment, we measured (a) the total
number n of cells in P , (b) the size |gridRDD| of non-
empty cells in P and (c) the size |wSumRDD| of weighted
attribute sum data, after executing the second step of aTHS
(Algorithm 4). Essentially, these values greatly affect the
performance of our solution, especially regarding the size of
produced network traffic, thus providing a deeper insight to
the complexity of our algorithm. Notice that by definition
|gridRDD| ≤ |wSumRDD| ≤ n, since |gridRDD| depends on
the data distribution, and |wSumRDD| depends on the value
h.

Notice that we use log-scale on the y axis in all our charts,
throughout the experimental section.

Evaluation methodology. We picked four parameters to
study their effect on the efficiency of our algorithm, namely
(a) the spatial size of cells (in terms of both latitude and
longitude), (b) the temporal size of cells, (c) the h distance
which defines the number of neighboring cells contributing to
the score of a reference cell ci and (d) the k number of hot
spots to be reported in the final result set. In practice, the first

Parameter Values
Spatial cell size of P (degrees) 0.05, 0.1, 0.5
Temporal cell size of P (hours) 1, 2, 12
h 1, 2, 3
top-k 50, 100, 500

TABLE II
EXPERIMENTAL SETUP PARAMETERS (DEFAULT VALUES IN BOLD).

two parameters affect the number n of cells of P , the third
parameter (h) refers to the number of broadcasting messages
which occur during the second step, and the fourth parameter
(k) affects exclusively the last step of our algorithm. Also, we
set a equal to 2 in all experiments.

For convenience, we briefly recall the steps of our algo-
rithms here:
• Step #1 (Building the Attribute Grid): The input data set

of trajectories is transformed and aggregated to a set of
cells (gridRDD), where each cell ci is expressed by its
id i and attribute value xi.

• Step #2 (Exchanging Cell Information): First we compute
the mean value X and standard deviation S of the
attribute values xi. Then, each cell of gridRDD broad-
casts its weighted attribute value to its neighbors and
computes its weighted attribute sum. The resulting data
set (wSumRDD) consists of cells ci which are expressed
by their id i and weighted attribute sum

∑n
j=1 wi,jxj .

• Step #3 (Calculating z-scores): For each cell in wSum-
RDD we calculate its Getis-Ord z-score. The resulting
RDD consists of cells ci which are expressed by their id
i and z-score G∗i .

• Step #4 (Sorting and reporting top-k): The result is sorted
by z-scores in descending order and we output only the
first k cells having the higher z-scores.

Our experimental setup is summarized in Table II. In each
experiment, we vary a single parameter, while setting the
others to their default values.

B. Experimental Results

Varying the spatial cell size. In Figure 3, we demonstrate
the results of our experiments, by varying the spatial cell size
of P . Higher sized spatial cells decrease the total number of
cells (n) used in the grid partitioning of the 3D space. In
turn, this is expected to lead to reduced execution time, since
fewer cells need to be computed and lower communication is
required by the algorithm. Indeed, the overall execution time
is reduced when the grid is of coarser granularity.

In terms of individual steps, the first step of our solution,
mostly depends on the size of input data set, thus it is not
significantly affected by the spatial size of cells, as shown in
Figure 3a. On the other hand, by using a larger cell size, the
performance of the remaining steps is improved, as the data
is aggregated into smaller number of cells. Put differently, all
constructed RDDs contain fewer objects and are of smaller
size, thus can be processed faster and produce less network
overhead by data exchange. Specifically, the execution time
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Fig. 3. Performance of our algorithm for various spatial cell sizes of P .
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Fig. 4. Performance of our algorithm for various temporal cell sizes of P .

of steps two and four follows linearly the spatial size of cells,
since for ten times larger cells, the execution time is ten times
less. Furthermore, step three proves to be the most efficient,
justified by the fact that it does not include any operation
involving the network.

Figure 3b depicts the total number of cells (n) in P ,
along with the number of cells contained in gridRDD and
wSumRDD, when using various sizes of cells for their spatial
dimensions. As expected, the total number of cells decreases
for a more coarse spatial partitioning. Additionally, following
the input data distribution, the relative number of empty cells
in the grid increases when using a finer partitioning scheme,
thus affecting the size of gridRDD data set. However, these
empty cells may have a non-zero weighted sum attribute value,
if they are located closely to other non-empty cells. This
is demonstrated by the fact that wSumRDD is larger than
gridRDD, since the former includes also some empty cells
which have a non-zero weighted sum attribute value.

Varying the temporal cell size. Figure 4 demonstrates the
efficiency of our algorithm for various temporal cell sizes. The
effect of larger cells in the temporal dimension to the overall
execution time is similar to the previous experiment: larger
temporal cell size leads to fewer total cells in the grid, thus
to reduced overall execution time. The experiment with the
most coarse temporal partitioning (12 hours), was measured
to be twice more efficient than the experiment using the finest
partitioning, in total execution time.

In terms of individual steps, the first step is (again) not
significantly affected by the size of the cell, since its associated
cost is dominated by the overhead of reading data from the
disk. The execution time of the rest of the steps, appears to be
higher for a finer temporal partitioning scheme, as depicted in
Figure 4a.

Similarly, the number of total cells in P decreases for a
higher value of temporal cell size, as depicted in Figure 4b.
The number of empty cells naturally increases for a finer
defined grid, resulting to smaller gridRDD and wSumRDD data
sets.

Varying h. aTHS can be parameterized with a user-defined
variable h, which defines the set of neighboring cells contribut-
ing to the calculation of each cell’s z-score. Figure 5 demon-
strates the experimental results when using different values for
variable h. The overall execution time is significantly reduced
for lower values of h, since each cell broadcasts its attribute
value to fewer neighboring cells, thus reducing the network
overhead for exchanging such information between cells. By
using a value of 3 for variable h, we measured three times
higher overall execution time compared to the experiment
having a value of 1. This significant reduction to the total
execution time in aTHS, results to an approximate result Ĝ∗i .
However, the deviation of Ĝ∗i to G∗i can be quantified as
explained in Section IV-B.

The execution time of our algorithm’s first step, is not
affected by the value of h, since it is not dependent on this
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Fig. 6. Performance of our algorithm for various values of k.

variable. As such, the size of gridRDD data set is also not
affected by the value of h, as shown in Figure 5b.

By using a larger value of h, the size of wSumRDD
increases, due to the fact that more empty cells obtain a
weighted attribute sum which is greater than zero. This data
set is produced during the second step of our solution, while
steps three and four operate on data sets having the same
size as wSumRDD. Hence, larger values of h result to higher
execution times for these individual steps.

Varying top-k. The value of top-k affects the size of the
final result set. Figure 6 demonstrates the impact of this
variable to data set sizes throughout the execution of our
algorithm and the individual steps’ processing times. The
overall execution time, is not significantly affected by the
value of this variable. As shown in Figure 6a, the first three
steps are not affected by the value of this variable, as their
goal is to compute the z-scores of all cells in P . This fact
is also reflected in Figure 6b, where the size of the data
sets is the same for all values of k. The fourth step of our
solution requires slightly higher processing time to produce
larger result set size, but the increase of its relative processing
cost is negligible.

VI. RELATED WORK

Hot spot analysis is the process of identifying statistically
significant clusters. This kind of analysis is often confused
with clustering with respect to the density of the identified

groups [12]. The computation of density gives us information
where clusters in our data exist, but not whether the clusters are
statistically significant; that is the outcome of hot spot analysis.
In geospatial analysis the hot spot discovery is performed with
spatial statistics like Moran’s I [13] or Getis-ord Gi* [11]
that measure spatial autocorrelation based on feature locations
and attribute values, while they result in z-scores and p-
values for the predetermined points or regions of interest.
A high z-score and small p-value indicates a significant hot
spot. A low negative z-score and small p-value indicates a
significant cold spot. The higher (or lower) the z-score, the
more intense the clustering. A z-score near zero means no
spatial clustering [11].

Trajectory hot spot analysis is related to the problem of
finding interesting places. In [14], interesting places are de-
fined as either: (a) the areas where a single moving object
spends a large amount of time, or (b) the frequently visited
areas from various trajectories, or (c) the areas where many
trajectories alter their state or behavior. In [15] interesting
places are identified as areas where several moving objects
spend large amount of time, by moving with low speed.
The minimum amount of moving objects and their minimum
duration of stay, should be provided by the user at query
time. To enable efficient execution for various parameters, an
indexing structure is proposed which enables fast retrieval of
trajectory segments based on their speeds. Notice that these
variations aim to discover spatial regions of interest, while



our approach identifies interesting spatial regions for various
temporal segments.

Hot spot analysis is a special case of spatio-temporal data
analysis, mobility data mining and more specifically trajectory
data mining, since we are interested in trajectory-based hot
spot analysis. These domains have been the subject of many
research efforts lately. Recent works on hot spot analysis for
spatio-temporal data include [16], [17]. The study in [17]
proposes a different way to visualize and analyze spatio-
temporal data. The aim is to identify areas of high event den-
sity, by using multivariate kernel density estimation. Different
kernels in spatial and temporal domains can be used. After
such hot spots have been identified, a spatio-temporal graph
can be formed to represent topological relations between hot
spots. In [16], a spatio-temporal graph is analyzed in order
to find anomalies on people’s regular travel patterns. These
interesting phenomena are called black holes and volcanos,
represented as subgraphs with overall inflow traffic greater
than the overall outflow by a threshold and vice-versa. The
detection of frequent patterns and relations between black
holes and volcanos lead to the discovery of human mobility
patterns. In [18], hot spot analysis is used for studying mobile
traffic. The aim is to identify locations where the density of
data volumes transmitted is high, based on specific values of
thresholds. The results of the analysis are then used to detect
the distribution of mobile data traffic hot spots and to propose
a meaningful cell deployment strategy.

In the domain of trajectory data mining [19] there are several
clustering approaches that are relevant to this work. The typical
approach is to either transform trajectories to vector data, in
order for well-known clustering algorithms to be applicable,
or to define appropriate trajectory similarity functions, which
is the basic building block of every clustering approach. For
instance, CenTR-I-FCM [20] builds upon a Fuzzy C-Means
variant to perform a kind of time-focused local clustering
using a region growing technique under similarity and density
constraints. For each time period, the algorithm determines
an initial seed region (that corresponds to the sub-trajectory
restricted inside the period) and searches for the maximum
region that is composed of all sub-trajectories that are similar
with respect to a distance threshold d and dense with respect to
a density threshold . Subsequently, the growing process begins
and the algorithm tries to find the next region to extend among
the most similar sub-trajectories. The algorithm continues until
no more growing can be applied, appending in each repetition
the temporally local centroid. In the same line of research,
having defined an effective similarity metric, TOPTICS [21]
adapts OPTICS [22] to enable whole-trajectory clustering (i.e.,
clustering the entire trajectories), TRACLUS [23] exploits on
DBSCAN [24] to support sub-trajectory clustering, while T-
Sampling [25], [26], introduces trajectory segmentation (aim-
ing at temporal-constrained sub-trajectory clustering [27]), by
taking into account the neighborhood of a trajectory in the
rest of the data set, yielding a segmentation that is related
only on the number of neighboring segments that vote for the
line segments of a trajectory as the most representatives. All

the above trajectory clustering approaches they are capable of
identifying trajectory clusters and their densities but do not
tackle the issue of statistical significance in the space-time
they take place.

There are several other methods that try to identify frequent
(thus dense) trajectory patterns. In case where moving objects
move under the restrictions of a transportation network, [28]
proposed an online approach to discover and maintain hot
motions paths while [29] tackled the problem of discovering
the most popular route between two locations based on the
historical behavior of travelers. In case where objects move
without constraints, [30] proposed a method to discover col-
location patterns, while in [31] where the goal is to discover
sequential trajectory patterns (T-patterns), the popular regions
that participate in T-patterns can be computed automatically
following a clustering approach that utilizes the density of the
trajectories in the space. The algorithm starts by tessellating
the space into small rectangular cells, for each of which the
density (i.e., the number of trajectories that either cross it
or found inside the cell) is computed. Then, by following
a region-growing technique the dense areas are enlarged by
including nearby cells as long as the density criterion is
fulfilled. The problem of identifying hot spots from trajectory
data in indoor spaces has been studied in [32]. It introduces
a formula for computing scores for indoor locations based on
users’ interests rather than measuring the amount of time a user
spends in a specific area. This formula is used for calculating a
score for each indoor area, based on the mutual reinforcement
relationship between users and indoor locations. These meth-
ods have a different focus from our proposal sharing similar
objectives and shortcomings as the aforementioned techniques.

The problem of finding hot spots for spatio-temporal point
data has been studied in SigSpatial Cup at 2016 (http://
sigspatial2016.sigspatial.org/giscup2016/home) where several
interesting methods where proposed. Among others, [33], [34]
proposed algorithms to identify hot spots based on spatial
density of point data (in particular drop-off locations of taxis).
Instead, in this paper, we study the problem of hot spot
analysis for trajectory data, which is different because the
effect of a data point to a cell depends on the trajectory in
which it belongs to (i.e., on other points). To the best of
our knowledge, there is a lack of parallel processing solutions
that operate on distributed trajectory data in an efficient and
scalable way to discover trajectory-based hot spots.

VII. CONCLUSIONS

In this paper, we formulate the problem of Trajectory
hot spot analysis, which finds many real-life applications
in the case of big trajectory data. We propose two parallel
data processing algorithms that solve the problem, which
are scalable for data of large volumes. Our first algorithm
(THS) provides an exact solution to the problem, but may
be computationally expensive depending on the underlying
grid partitioning and the number of cells. Also, we propose
an approximate algorithm (aTHS) that practically ignores
the contribution of cells located further away from the cell



under study, thereby saving computational cost. Perhaps more
importantly, we propose a method that can be used to bound
the error in the approximation, for a given subset of cells
that are taken into account. Thus, we can trade-off accuracy
for efficiency in a controlled manner. Our implementation is
based on Apache Spark, and we demonstrate the scalability of
our approach using a data set of vessel trajectories that spans
three years in total. In our future work, we intend to explore
variants of the problem of trajectory hot spot analysis, which is
a problem that deserves further study, also for data sets coming
from other domains, such as the aviation or urban domain.
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