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Abstract—Top-k join is an essential tool for data analysis, since
it enables selective retrieval of the k best combined results that
come from multiple different input datasets. In the context of Big
Data, processing top-k joins over huge datasets requires a scalable
platform, such as the widely popular MapReduce framework.
However, such a solution does not necessarily imply efficient
processing, due to inherent limitations related to MapReduce. In
particular, these include lack of an early termination mechanism
for accessing only subset of input data, as well as an appropriate
load balancing mechanism tailored to the top-k join problem.
Apart from these issues, a significant research problem is how
to determine the subset of the inputs that is guaranteed to
produce the correct top-k join result. In this paper, we address
these challenges by proposing an algorithm for efficient top-
k join processing in MapReduce. Our experimental evaluation
clearly demonstrates the efficiency of our approach, which does
not compromise its scalability nor any other salient feature of
MapReduce processing.

I. INTRODUCTION

Rank-aware query processing is essential for large-scale

data analytics, since it enables selective retrieval of a bounded

set of the k best results according to a user-specified ranking

function. In real-life applications, ranking needs to be per-

formed over combined records that originate from different

input relations, using a query known as top-k join:

SELECT some attributes
FROM T1,T2,. . . ,Tm

WHERE join condition AND selection predicates
ORDER BY f(T1.s1, T2.s2, ..., Tm.sm)
LIMIT k

where the resulting join tuples are ordered using a scoring

function f() (order by clause) and the top-k answers based on

their scores (si) are returned to the user (limit clause). From

the aspect of the database system, the challenge associated

with ranked queries is to efficiently process the query by

accessing only a handful of carefully selected tuples, without

examining all input relations in their entirety.

In the era of Big Data, the importance of top-k join

processing is paramount, since it is practically infeasible for

users to inspect large unranked query result sets, simply due

to their extreme volume. Yet, despite the significance of the

problem, there is a lack of fully parallelized algorithms that

operate efficiently at scale and provably return the correct and

exact result. To the best of our knowledge, existing solutions

for top-k joins in the context of MapReduce either cannot

guarantee retrieval of k results (RanKloud [1]), or rely on the

availability of a distributed data store that provides random

access and execute the query in a centralized fashion (approach

described in [2]).

Motivated by this observation, in this paper, we address the

problem of processing top-k joins in the popular programming

model of MapReduce over data stored in HDFS. We start by

demonstrating that a simple parallel MapReduce algorithm that

solves the problem has limitations with respect to performance.

Then, we propose a new framework for top-k join processing

in MapReduce that includes several optimizations at different

parts of MapReduce processing, and boosts the performance

of top-k join processing.

In a nutshell, this paper makes the following contributions:

• We present a novel framework for top-k join processing

in MapReduce. Salient features of out framework include

that it is built on top of “vanilla” Hadoop, without chang-

ing its internal operation, and that our solution consists

of one single, fully parallelized MapReduce job, thereby

exploiting parallelism as much as possible and avoiding

the initialization overhead of chained MapReduce jobs.

• We advocate the use of data summaries, in the form

of histograms, that are efficiently created using one-pass

algorithms, in order to design efficient algorithms that

solve the parallel top-k join problem.

• We equip our framework with several techniques based

on the constructed histograms, whose combination is

responsible for improved performance, including early

termination, load balancing, and selective access of disk-

resident data.

• We empirically evaluate our framework by experiments in

a medium-sized cluster consisting of 12 nodes, showing

that we obtain orders of magnitude improvements in

execution time.

The rest of the paper is structured as follows: Section II

provides an overview of related work. Section III describes

preliminary concepts and the problem statement. Section IV

presents a basic solution in MapReduce and highlights its

limitations. Then, in Section V, the proposed framework for

top-k joins is presented. In Section VI we present an exten-

sion to our approach that significantly improves performance.

Section VII demonstrates the results of our experimentation,

and Section VIII concludes the paper.



II. RELATED WORK

In centralized databases, many works have studied the

problem of efficient top-k join processing, including J∗ [3],

NRA-RJ [4], rank-join algorithm [5], and DEEP [6].

In the context of distributed data sources, Fagin et al. [7]

study equi-joins of ranked data when the joining attribute is a

unique identifier present in all relations (i.e., one-to-one join).

However, in our work, we are interested in a generalization of

this problem, focusing on arbitrary user-defined join attributes

between relations (many-to-many join). Only few studies have

focused on this problem. PJoin [8] and [9] is based on

sampling to estimate score bounds that prune records which

cannot belong to the result set. A more efficient approach

is DRJN [10], where a two-dimensional histogram for each

relation keeps the distribution of scores (number of records

within each range) for each join value (or for ranges of values).

This histogram is distributed to all participating nodes, and

bounds are computed by performing a distributed join on the

histograms, thus avoiding transfer of those records that cannot

be in the final result.

Two approaches have been proposed for top-k join in the

context of MapReduce. RanKloud [1] computes statistics (at

runtime) during scanning of records and uses these statistics

to compute a threshold (the lowest score for top-k results)

for early termination. In addition, a new partitioning method

is proposed, termed uSplit, that aims to repartition data in a

utility-sensitive way, where utility refers to the potential of

a record to be part of the top-k. The main difference to our

work, is that RanKloud cannot guarantee retrieval of k results,

while our approach aims at retrieval of the exact result. In [2]

Ntarmos et al. study the problem of how to efficiently perform

rank join queries in NoSQL databases. Their main approach is

based on creating a two-level statistical data structure (BFHM)

that uses histograms at the first level, and Bloom filter on the

second level. The BFHM index is stored in HBase, and top-k

joins are executed by retrieving and processing (part of) this

index structure. In contrast to our work, [2] relies on having

the data stored in a database for efficient random access,

while our approach can handle data files directly. Another

important difference is that their approach for query execution

is centralized and executed by one coordinator, while our

computation of the result is performed in parallel by all nodes.

Two of the key contributions in our approach are based on

early termination and load balancing. The most common so-

lution in previous work to early termination is to 1) introduce

a new input provider stage before the Mapper that controls

reading of new splits to be processed by MapReduce, and 2) let

one of the subsequent stages provide this input provider with

information on whether more data should be read or not [11],

[12]. Load balancing is typically performed by partitioning

the data so that all Reducers receive approximately the same

amount of data, or all Reducers have to perform the same

amount of work [13]. Instead, we consider the problem as

tasks with estimated finishing times, and base our approach

on solving the multiprocessor scheduling problem [14].

III. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we define the type of queries we will focus

on, and we formulate the problem statement.

A. Top-k Queries and Top-k Joins

Given an input table or relation T with n scoring attributes,

we use τ to represent a record (or tuple) of T , and τ [i] refers

to the i-th scoring attribute (i ∈ [1, n]). A top-k query q(k, f)
returns the k best query results, based on a monotone scoring

function f . When applied to relation T , the result of a top-

k query q(k, f) is a set of k records τ1, . . . , τk of T with

minimum scores, i.e., values of f(τ). Notice that without loss

of generality, in this paper, records with minimum scores are

considered best.

Quite often in rank-aware processing, the top-k results of

a join of two (or more) input relations are requested. This

is treated as an operator, called top-k join query, and can

be answered in a straightforward (albeit costly) way by first

performing the join and then ranking the join records by means

of the scoring function. However, this results in wasteful

processing, therefore efficient algorithms have been proposed

that interleave the join with ranking.

In the context of this paper, we consider that an input

relation (table) Ti contains a join attribute ai, a scoring

attribute si, as well as any number of other attributes, which

are omitted in the subsequent presentation for simplicity. Thus,

Ti consists of records τ described by a unique identifier (τ.id),

a join attribute value or join value (τ.ai), and a value of scoring

attribute (τ.si). We focus our attention on binary1 many-to-

many top-k equi-joins, where the input tables T0 and T1 are

joined on a join attribute a0 = a1 and a combination of the

scoring attributes (s0 and s1) of both relations is used as input

to the scoring function f in order to produce the top-k join

records.

B. Problem Statement

We are now ready to formulate the problem addressed in

this paper.

Problem 1. (Parallel Top-k Join) Consider two input tables

T0 and T1 with join attribute a0, a1 and scoring attribute s0,

s1 respectively, which are horizontally partitioned over a set of

machines. Given a top-k join query q(k, f, T0, T1) defined by

an integer k and a monotone scoring function f that combines

the scoring attributes s0 and s1 to produce scores for join

records, the Parallel Top-k Join problem requires to produce

the top-k join records with minimum scores.

In the context of MapReduce, input tables T0 and T1 are

split in HDFS blocks and stored in HDFS following the

concept of horizontal partitioning. A record τ in each file is

of the form (τ.id, τ.ai, τ.si), where τ.id is a unique identifier,

τ.ai is the join attribute, and τ.si is the scoring attribute. In

addition to this triple, each line may in general contain other

1Notice that this is not restrictive and that our approach can be generalized
for multi-way joins, but we only focus on binary joins for simplicity.
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Fig. 1. Example of data flow in the execution of RSJSimple.

attributes of the record τ of arbitrary length. Thus, in the

general case, each node stores only a subset of the records

of each relation, and the problem is to design an algorithm

that consists of a Map and Reduce phase, in order to compute

the top-k join efficiently in a parallel manner.

Finally, we note that the most costly part of parallel pro-

cessing of the top-k join is the computation of top-k join

records per join value. Therefore, in this paper, we focus on

providing a fully parallelized solution to this problem. The

final step to obtain the top-k join results needs to process k ·m
join records (where m represents the number of distinct join

values), which is typically orders of magnitude smaller than

the size of the initial table Ti, i.e., k ·m << |Ti|. Therefore,

this computation can be easily performed by a centralized

program that processes these individual top-k results without

significant overhead.

IV. A FIRST BASELINE SOLUTION

In this section, we describe a basic solution in MapReduce

that adopts the technique known as Reduce-side join. Then, we

present the limitations and weaknesses of the basic solution

that guide our design of more efficient algorithms for top-k

join processing in MapReduce.

A. Basic Solution in MapReduce

We sketch a Reduce-side join algorithm, termed RSJSimple,

that computes the correct top-k join result. Fig. 1 shows an

example of the data flow in the execution of RSJSimple.

First, the Mappers (which execute the Map function) access

the input tables Ti record-by-record (τ = 〈τ.id, τ.ai, τ.si〉).
The input to the Map function (Algorithm 1) consists of a

key-value pair, where the key is a unique identifier, and the

value is the complete record τ . It outputs each key-value

pair using a new CompositeKey that consists of (ai, si, i)

and the input record τ as value (cf. Fig. 1(a)). The tag i

is a value that indicates the table from which τ originates.

The output key-value pairs of the Map phase are grouped

by join value (τ.ai) and assigned to Reduce tasks using a

customized Partitioner. Also, in each Reducer, we need to

order the records within each group in ascending order of

score (τ.si), this is achieved through the use of the composite

keys for sorting. The output of the Reduce phase is records of

the form a, τ.id, τ ′.id, f(τ, τ ′), as shown in Fig. 1(e)). Also,

notice the unbalanced allocation to the two Reducers.

Algorithm 1 RSJSimple: Map phase

1: Input: T0, T1

2: Output: records of T0, T1 based on join value
3: function MAP (τ (τ.ai, τ.si): input record of table Ti)
4: if (τ ∈ T0) then
5: τ.tag ← 0
6: else
7: τ.tag ← 1
8: output 〈(τ.ai, τ.si, τ.tag), τ〉
9: end function

Algorithm 2 RSJSimple: Reduce phase

1: Input: A subset of join values key1,key2,. . . with the associated
sets of records V1,V2,. . .

2: Output: top-k records for join value key
3: function REDUCE(key, V : Set of records with join value:

key sorted in ascending order of score)
4: for (τ ∈ V ) do
5: if (τ.tag = 0) then
6: Load τ in M0

7: else
8: Load τ in M1

9: if (M0.size() ≥ k) and (M1.size() ≥ k) then
10: break
11: output 〈RankJoin(k, f,M0,M1)〉
12: end function

The combination of these techniques enables each Reduce

task (Algorithm 2) to take as input all the records associated

with a specific value of the join attribute, and perform the

top-k join for each such join value independently of the other

Reduce tasks. Moreover, due to the sorted access to records

by ascending score, it suffices to read in memory (M0 and

M1) only as many records as k from each input table (line 9),

since any other record cannot produce a top-k join result (i.e.,

it will always produce a join record with worse score).
The actual computation of the top-k join for a given join

value locally at the Reducer is straightforward, by joining the



records of M0 and M1 and keeping the best k join records.

Essentially, the Map phase groups the records of the two tables

based on the join value, while the Reduce phase performs the

top-k join operation for each such group individually. This

produces as output the top-k join records for each join value.

In order to compute the k join records of the final result

q(k, f, T0, T1), we need to process the top-k join records of

each join value and keep the global top-k join records inde-

pendently of the join value. Given the fact that the individual

top-k join records per join value are small in size (i.e., at most

k records per join value), this computation is performed in the

driver program of the MapReduce job that takes as input the

outputs of the Reduce tasks without significant overhead.

B. Limitations of the Basic Solution

RSJSimple provides a correct solution to the parallel top-k

join problem, however it has severe limitations with respect

to performance. First, it accesses both input tables in their

entirety, even though intuitively a much smaller set of records

suffices to produce the correct result. In other words, it

clearly results in wasting resources, in terms of disk accesses,

processing cost, as well as communication. Ideally, we would

like to access only a few HDFS blocks selectively and also

terminate processing of the Map phase as soon as we have

identified that the already accessed records are guaranteed to

produce the correct result. Second, the assignment of Map

output keys (join values) to Reduce tasks is performed at

random, since it does not use any knowledge regarding the

number of records associated with each join value. This can

lead to unbalanced work allocation to the different Reduce

tasks, thereby delaying the completion of the job. Ideally, we

would like to intentionally assign join values to Reduce tasks,

by exploiting knowledge of the join value distribution, so load

balancing in the Reduce phase can be achieved.

V. A FRAMEWORK FOR TOP-K JOINS IN MAPREDUCE

In this section, we present the proposed framework for

top-k join processing in MapReduce. Salient features of

our framework include that it is built on top of “vanilla”

Hadoop, without changing its internal operation, and that our

solution consists of one single, fully parallelized MapReduce

job, thereby exploiting parallelism as much as possible and

avoiding the overhead of chained MapReduce jobs.

A. Overview

The two input tables T0 and T1 are uploaded and stored

as separate files in HDFS, sorted in ascending order based on

scoring attribute2. In addition, for each input table, we compute

and store in HDFS histograms H(T0) and H(T1) that maintain

the number of records of any value of the join attribute

for a range of scoring values. Notice that this information

can be constructed during data upload of the input tables to

HDFS with negligible overhead, as will be demonstrated in

the following.

2Recall that, in this paper, without loss of generality, we retrieve the top-k
join records with minimum aggregate values.
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Given a top-k join query, we compute score bounds for each

input table (based on the histograms) that determine the subset

of records sufficient to produce the correct result, prior to job

execution. Thus, we can selectively load and process in the

Map phase only a small subset of the stored data, and terminate

processing of Mappers as soon as records with score values

larger than the bounds are encountered. Moreover, we optimize

the performance of the Reduce-side join by introducing a load

balancing mechanism that distributes join values to Reduce

tasks fairly. The resulting approach we call RSJETLB.

B. Histogram Construction

Processing data in Hadoop requires data upload, a phase

where the entire dataset is read sequentially from an external

source and stored in the distributed file system (HDFS). We

can exploit this phase, which is mostly I/O-intensive and the

CPU is underutilized, in order to seamlessly build histograms

in the background. An important requirement is the availability

of one-pass construction algorithms, which restricts the poten-

tial types of histograms that can be built. The constructed data

synopses are stored in HDFS too, so that any MapReduce job

can access it prior to or during execution. Typically, the size

of histograms is orders of magnitude smaller than that of the

original dataset, however an obvious trade-off exists between

accuracy and disk size, i.e., higher accuracy can be achieved by

constructing larger histograms that consume more disk space.

For our purposes, we choose to build equi-width histograms

whose construction is simple and conforms with the one-pass

requirement. In more detail, when a record τ (τ.ai, τ.si) is

read during the upload phase, the histogram of join value

τ.ai is updated by increasing by one the contents of the

bin that corresponds to score value τ.si. It should be noted

however that our approach is able to take advantage of better

histograms that are built by more complex algorithms, but their

construction cannot be seamlessly done and would require

some pre-processing (e.g., another MapReduce job).

Fig. 2 depicts equi-width histograms of T0 and T1 for a

specific common value of the join attribute. For each input

table Ti, we create as many such histograms as the individual

values of the join attribute. Each histogram is denoted as

H(Ti). For instance, the depicted histogram H(T0) of T0

indicates that it contains 10 records with join value a0 = x in

total. Also, the first histogram bin indicates the existence of

1 record with score between 0-5 (we will use the shorthand



[0− 5] : 1 from now on). The remaining bins are: [5− 10] : 2,

[10− 15] : 4, and [15− 20] : 3.

C. Early Termination

In order to reduce the processing cost of the join, we

process only a subset of the input records of both tables that is

guaranteed to provide the correct top-k join result. Intuitively,

only those records of table Ti with scores lower than a score

bound bi participate in the join and contribute to the top-k

join result. Therefore, in order to achieve early termination a

method is required to determine the score bounds b0 and b1,

so that all records with scores higher than bi can be discarded

as early in the process as possible.

1) Score bound estimation: Given as input only the his-

tograms of both tables, the challenge is to compute correct

score bounds bi for the scores of input records of each table

Ti. For this purpose, we employ a variation of the algorithm

proposed in [10] for score bound estimation. In practice, this

algorithm performs a join over the histograms of the two

tables and estimates the number of join results and a range

of scores for these results. The objective of this algorithm is

twofold: first, to identify histogram bins and the corresponding

score ranges that produce at least k join records, and second,

to ensure that no other combination of histogram bins can

produce join records with smaller score value than the k-th

join record. To this end, histogram bins are accessed and joined

until: (1) the number of join records exceeds k, and (2) the

score of any join record produced by any unseen histogram

bin is not smaller than the score of the current k-th join record.

We explain the operation of the algorithm using an example.

Example 1. Consider the histograms depicted in Fig. 2 and

assume that that the top-k join result (with k = 1) is requested

using as scoring function the sum. By examining the first bin

of each histogram, we know that there exist 2 (= 1× 2) join

records with score in the range [0−15], i.e., [0−15] : 2. After

examining the second bin of each histogram, we additionally

know that there exist: [10−25] : 3, [5−20] : 4, and [15−30] :
6. Only after the third bin of T0 is examined (produced join

records not shown here), we can safely stop processing, and

report score bounds b0 = 15 and b1 = 20. This is because we

already have at least 2 records (i.e., more than k = 1) with

score [0 − 15], and any join record that would be produced

by combinations of unseen bins of T0 or T1 will have a score

larger than 15.

2) Implementing early termination in Hadoop: Assuming

that the input tables are stored sorted in HDFS and that also

the histograms are available, we create an early termination

mechanism to process, in the Map phase, selectively only

those input records with score lower than the respective bound.

It should be noted that the early termination mechanism is

implemented on top of Hadoop by extending it, i.e., we do

not change the Hadoop core. In this way, our algorithm is

portable and compatible with different Hadoop distributions.

Algorithm 3 RSJETLB: Map phase

1: Input: T0, T1, b0, b1, H (in DistributedCache)
2: Output: records of T0, T1 with scores lower than b0, b1
3: function MAP (τ (τ.ai, τ.si): input record of table Ti)
4: r ← H.get(τ.ai)
5: if (τ ∈ T0) then
6: if (τ.s0 ≤ b0) then
7: τ.tag ← 0
8: output 〈(τ.ai, τ.si, τ.tag, r), τ〉
9: else

10: if (τ.s1 ≤ b1) then
11: τ.tag ← 1
12: output 〈(τ.ai, τ.si, τ.tag, r), τ〉
13: end function

D. Load Balancing

The workload of a Reduce task is defined by the number

of records that it needs to process and join. To perform load

balancing, our goal is to find an assignment of the join values

to Reduce tasks, such that the maximum number of records per

Reduce task is minimized. This problem is equivalent to the

Multiprocessor Scheduling Problem [14]. Unfortunately, the

Multiprocessor Scheduling Problem is known to be NP-hard.

Therefore, we utilize a heuristic algorithm called LPT (Longest

Processing Time) which sorts the join values based on number

of join records and then assigns them to the machine (Reducer)

with the lowest aggregate number of join results so far.

Notice that the reason that makes the LPT algorithm

applicable in our setting is that we know the number of

records associated with each join value in advance, before the

MapReduce job starts. In turn, this is due to the histograms

employed, which provide two vital pieces of information for

query processing: (a) the score bounds (that allow for early

termination), and (b) the number of records associated with

each join value and with respect to the score bounds (that

enables the load balancing mechanism).

In technical terms, during bound estimation, we also com-

pute the number of join results per join value. This information

is used by LPT to compute the assignment of join values

to Reduce tasks, and it is broadcast to all Mappers using

Hadoop’s DistributedCache. Thus, each Mapper can easily re-

trieve the ReducerId r for a given join value. Then, the value r

is added to a CompositeKey, in addition to join key, score and

originating table (cf. Section IV-A). Moreover, we implement a

customized Partitioner that checks the CompositeKey of each

output record and assigns the record to Reducer r.

Algorithm 3 shows how early termination and load balanc-

ing can be implemented in the Map phase. The algorithm

takes as input the score bounds for each input table and

accesses the sorted input tables. Also, a HashMap H captures

the assignment of join values to Reduce tasks, as mentioned

above. As long as an input record τ from table Ti has a

score lower than the score bound bi, i.e., τ.si ≤ bi, the

record is passed on to the Reduce task. It is guaranteed that

no record with score higher than the bound can produce a

join result that belongs to the top-k join results, so these can

safely be discarded, thus significantly reducing the amount of
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Fig. 3. Example of data flow in the execution of RSJETIndex.

records to be communicated to and processed by the Reducers.

Notice that the Reduce function is identical to the one used

in Algorithm 2.

VI. SELECTIVE DATA ACCESS

In order to attain performance gains in rank-aware process-

ing, a critical factor is to avoid redundant I/O, since typically

a few records suffice to produce the top-k join result. One

shortcoming of RSJETLB is that although the Mappers only

output records that are sufficient to produce to the final result,

it still needs to access all blocks in the input files. In this

section we describe how we can achieve only accessing blocks

that contain records that are needed for producing the final

result. This adds to our framework support for selective data

access, which enables reading only part of the input files (i.e.,

only few HDFS blocks) during query processing.

We implement the functionality of early termination using

a customized RecordReader. The RecordReader is the object

responsible for accessing the input data and creating the key-

value pairs that are passed as input to the Map tasks. The

default RecordReader accesses the input data in its entirety.

Instead, our customized RecordReader takes as input the score

bounds for each input table and accesses the sorted input

tables.

The key to access only part of the files is to be able to

determine, given a particular score, the position of the last

record in the file that can contain this score. We achieve this

by utilizing an index file T idx

i
for each input table Ti, that

can be used to map between position and score. The index

files are stored in HDFS and are typically created during

loading of data to HDFS at the same time as histogram

construction is performed. Thus the index creation process

incurs no additional I/O except for writing the index file.

The index files contain records of the form: (pos, score), as

many as the number of HDFS blocks needed to store Ti minus

one. Essentially, each record keeps the position (measured in

bytes from start of the file) and the score of the last record

in each HDFS block. Obviously, we do not need to keep this

information for the last HDFS block.

Assuming a score bound bi can be computed that signifies

that only those records with score lower than bi are sufficient to

Conceptual 
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blocks of a 

table (T) 
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HDFS

index file 

T
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Fig. 4. The index file T
idx of a table T stored in HDFS.

produce the top-k join result, then T idx

i
is exploited to identify

the exact subset of HDFS blocks of Ti that contain these

records. Put differently, T idx

i
provides the number of bytes the

need to be read from the file of Ti. Fig. 4 graphically illustrates

an index file with pointers (position in bytes) to the last

record of each HDFS block. Capitalizing on this knowledge,

we provide our own implementation of an InputFormat class,

where we override the getSplits() method, which is responsible

for accessing input data and creating logical units of work

(InputSplits) for the Map phase. In this way, only the selected

blocks are accessed from disk and form InputSplits.

Fig. 3 demonstrates the data flow of the resulting algorithm

RSJETIndex. Essentially, the RecordReader is able to avoid

loading HDFS blocks. Assuming again a score bound b0 =
140, the shaded block of T0 will not have to be read at all,

since we know from the index that its records have scores

larger than the bound.

VII. EXPERIMENTAL EVALUATION

In this section, we report the results of our experimental

study.

A. Experimental Setup

Platform. We deployed our algorithms in an in-house

Hadoop cluster consisting of twelve server nodes. The JVM

heap size is set to 2GB for Map and Reduce tasks. We also
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Fig. 5. Scalability study of all algorithms with dataset size.

configure HDFS with 128MB block size and use a default

replication factor of 3.
Algorithms. We compare the performance of the following

algorithms that are used to compute top-k joins in Hadoop:

• RSJSimple: the baseline top-k join algorithm without

early termination (Section IV),

• RSJETLB: the top-k join algorithm that uses early termi-

nation and load balancing (Section V), and

• RSJETIndex: the top-k join algorithm that additionally

selectively loads HDFS blocks (Section VI).

Datasets and experimental parameters. In order to exper-

iment with datasets of sufficiently high number of records, we

used a synthetic data generator to produce large input datasets.

We vary the size of input tables Ti from 1GB to 0.25TB.

We use the following synthetic data distribution for generating

the scoring attributes of relations: (a) uniform (UN), and (b)

skewed (zipf distribution) with varying parameter of skewness

0.5 and 1, denoted as ZI0.5 and ZI1.0 respectively. We vary

the number of distinct join values in each table (from 100 to

2,000), thereby affecting the join selectivity to study its effect

on our algorithms. We also perform an experiment where the

distribution of the values in the join attribute is varied to study

this effect too. In addition, we also studied the effect of varying

the number of requested results (k) from 10 to 500. The main

conclusion is that the value k does not significantly affect the

total execution time of the algorithms, therefore these results

are omitted. In all cases we set the number of Reduce tasks

R equal to 10, and we use sum as scoring function.
Metrics. The main metric used is the total execution time

for each job. In addition, we measure the CPU time spent in

Map and Reduce phases, as well as the size of InputSplits for

each job. Unless explicitly mentioned, all results on y-axis are

depicted using log-scale. It should be noted that the top-k join

query that we evaluated produces the top-k join tuples per join

value. The final result is easily obtained by merging the top-k

tuples per attribute to the final top-k join result.

B. Experimental Results

1) Scalability study: For this experiment, we created five

different datasets of varying size denoted as DS1 – DS5. The

respective parameters of these datasets are reported in Table I.

All datasets are generated with ZI0.5 in the scoring attribute.

We used k = 10 in this experiment.
Fig. 5 reports the results of our scalability study with

dataset size. In Fig. 5(a), the total execution time is shown,

Dataset Size T0, T1 Distinct join values

DS1 5.7GB, 5.8GB 500
DS2 11GB, 11.3GB 1,000
DS3 23GB, 24GB 2,000
DS4 115.8GB, 118.8GB 1,000
DS5 240.9GB, 251.2GB 2,000

TABLE I
DATASETS USED FOR SCALABILITY STUDY.

and RSJETLB is 1 to 1.5 orders of magnitude better than

RSJSimple. Also, when the size of datasets is increased, it

becomes clear that the algorithm RSJETIndex that incorporates

all our techniques outperforms the other algorithms by a

large margin. For our largest setup (DS5) consisting of 0.5TB

input data in total, RSJETIndex is two orders of magnitude

faster than RSJSimple, and more than five times faster than

RSJETLB. Another strong point that should be mentioned

is that the gain of our algorithms compared to RSJSimple

increases for larger datasets. This is a strong witness in favor

of their scalability for large inputs.

Fig. 5(b) explains the advantage of the technique that

selectively loads data blocks to be processed by the job. In

particular, RSJETIndex requires to load significantly fewer

data compared to the other algorithms. In the largest setup,

RSJETIndex loads three orders of magnitude fewer data (mea-

sured in Bytes) than all other algorithms. This is the main

factor that contributes to its superiority compared to the other

algorithms. In contrast, RSJETLB accesses almost the same

data from disk as RSJSimple. However, it performs faster due

to processing and shuffling fewer data, as a result of the early

termination employed.

Fig. 5(c) and 5(d) show that the advantage of the algorithms

that use early termination is also sustained when examining

the CPU processing time spent in Map and Reduce phases

respectively. In particular, in Fig. 5(c), we observe that the

algorithms using the early termination technique are faster than

RSJSimple because of the reduction of the number of input

records in the Map phase. In addition, RSJETIndex is even

faster as it launches even fewer Map tasks than RSJETLB.

This experiment is our main result, as it clearly demon-

strates the performance gains of our framework compared to

a baseline solution, when scalability with respect to dataset

size is considered.
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scoring attribute.
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2) Varying the data distribution on score attribute: For this

experiment, we use a dataset of 20GB with distinct join values

2,000 and k=10. We create three datasets DS1, DS2 and DS3,

with varying distribution on the scoring attribute; DS1 is UN,

DS2 is ZI0.5, and DS3 is ZI1.0.

Fig. 6 shows the results when varying the data distribution

on scoring attribute. Fig. 6(a) depicts the overall execution

time, which is reduced when increasing the skewness on the

data distribution of the scoring attribute. This is due to the

fact that in the case of more skewed scoring distributions, the

algorithms that use early termination need to process fewer

input records to retrieve the top-k join result. Put differently,

the computed score bounds have lower values, thus fewer

records need to be processed. Fig. 6(b) shows the CPU time

spent in the Map phase, which follows the same trend as

described above. In all cases, our algorithms significantly

outperform RSJSimple, and among our variants RSJETIndex

is consistently the better performing algorithm.

3) Effect of load balancing: Finally, we demonstrate the

effect of load balancing by a small experiment concerning

datasets of 1GB where the distribution of the join attribute

is skewed (ZI0.5). Fig. 7 depicts the number of join re-

sults assigned to each Reducer for two variants of algorithm

RSJETLB: the one described in Section V-D (depicted with

black bars) and one with the load balancing disabled (depicted

with white bars). The latter uses only early termination and

assigns Map output keys to Reducers using Hadoop’s default

hash-based partitioning, which essentially operates as a ran-

dom partitioning. Notice that the y-axis is not in log scale.

The result shows that our load balancing assigns join results

to Reducers in a more uniform way, thereby allocating the

work in a more fair way. Moreover, it is clear that there is

one Reducer in the variant where load balancing is disabled

that has more load than any Reducer of the other using

load balancing. For completeness, we note that the high load

imposed on Reducer 0 (white bar) is due to a single join value

that has too many join results, whereas the same join value is

assigned to Reducer 0 also when load balancing is disabled

(black bar), but this Reducer is assigned additional join values

due to the random assignment. This experiment demonstrates

the benefit of employing our load balancing technique.

VIII. CONCLUSIONS

In this paper, we presented a framework for processing

top-k joins in MapReduce. Distinguishing features of our

algorithms include the computation of the top-k join in a

fully parallelized way using a single MapReduce job, as

well as their implementation on top of “vanilla” Hadoop.

Our approach is based on the use of data summaries, in

the form of histograms, which are computed at data upload

time with zero overhead. To achieve performance gains we

make use of various techniques in our framework, including

early termination, load balancing, and selective access to data.

Our experimental study demonstrates the efficiency of our

framework over different setups.
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